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irmãos Augusto e Débora e à
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RESUMO

Águas subterrâneas são econômica e socialmente importantes e sua contaminação gera

grandes preocupações. Nesse sentido a modelagem computacional pode contribuir na

gestão de águas subterrâneas e no planejamento da remediação de áreas contaminadas,

realizando previsões considerando implicações de diversas alternativas sem o custo

de esperar ou colocá-las em prática. O objetivo deste trabalho é estudar modelos

matemáticos para os fenômenos envolvidos bem como desenvolver ferramentas numéricas

para a simulação computacional que podem auxiliar na prevenção, no controle e na

remediação da poluição das águas subterrâneas. Nos experimentos computacionais é

simulado o transporte de múltiplas espécies. O problema corresponde a um sistema de

equações diferenciais parciais não lineares de advecção-difusão-reação, acopladas pelas

reações de biodegradação e sorção em modo de não equiĺıbrio. A biodegradação é

representada pelo modelo cinético de Monod multiplicativo. A sorção, descrita pela

isoterma de Freundlich, atua em modo de equiĺıbrio e não equiĺıbrio simultaneamente,

e ocorre apenas sobre o contaminante. A solução do sistema de EDP’s é obtida em

dois passos. No primeiro resolve-se o transporte do contaminante e do oxigênio, onde

a discretização espacial é realizada pelo método dos elementos finitos e um método da

famı́lia trapezoidal generalizada para a discretização temporal. O método de Newton é

utilizado para tratar a não linearidade gerada pela sorção de equiĺıbrio no transporte do

contaminante. No passo seguinte, as reações são aproximadas pontualmente pelo método

de Runge-Kutta de quarta ordem. Os resultados obtidos nos experimentos computacionais

são comparados aos resultados de simulações encontradas na literatura. Nas simulações

observou-se a influência da inclusão das reações não lineares de biodegradação e sorção de

equiĺıbrio e não equiĺıbrio ocorrendo simultaneamente. Assim o estudo das interações entre

as reações, pode trazer contribuições para a modelagem do transporte de contaminantes

em águas subterrâneas.

Palavras-chave: Poluição de solos e aqúıferos. Meios porosos. Biorremediação.

Cinética Monod multiplicativa. Isotermas de sorção.



ABSTRACT

Groundwater contamination generates large concern related with public health and

environmental conservation. The computational modeling can contribute to groundwater

management and remediation planning of contaminated areas, making predictions for

several scenarios of contamination without the cost of waiting or of putting them into

practice. The aim this work is study mathematical models for the phenomena involved

and develop numerical tools for the simulation that can assist in the prevention, control

and remediation of groundwater pollution. In the computational experiments is simulated

the multiple species transport. This problem is modeled for a system of nonlinear

partial differential equations, coupled by the biodegradation and sorption reactions.

Biodegradation is represented by the multiplicative Monod kinetic model. The sorption is

described by the Freundlich isotherm and occur only with the contaminant. The solution

of the PDE’s sistem is obtained in two steps. In the first resolves the contaminant and

oxygen transport, the finite elements method and Crank-Nicolson scheme are respectively

used in the spatial and time discretizations. The Newton method is used to treat the non-

linearity generated by the sorption equilibrium in the transport of the contaminant. The

ordinary differential equations of the reactions is approximated by the fourth-order Runge-

Kutta method. Numerical results presented in this work have shown good agreement

with solutions introduced by others authors. In the simulations we observed the influence

of the inclusion of non-linear reactions of biodegradation and sorption equilibrium and

nonequilibrium happening simultaneously. So the study of interactions between the

reactions should contribute to the modeling of contaminant transport in groundwater.

Keywords: Pollution of soils and aquifers. Porous media. Bioremediation.

multiplicative Monod kinetic. Sorption isotherms.
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Cheng, 2010 [4]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1 Ilustração de um meio poroso. . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2 Volume de controle representativo Ω. . . . . . . . . . . . . . . . . . . . . . . . 24

2.3 Comportamento da Isoterma de Freundlich, equação (2.38), com kfj = 1 e

valores de pf indicados na legenda. . . . . . . . . . . . . . . . . . . . . . . 33

2.4 Comportamento da Isoterma de Langmuir, equação (2.39), com klj = 1 e

valores de Q0
j indicados na legenda. . . . . . . . . . . . . . . . . . . . . . . 34

3.1 Esquema representativo da metodologia da decomposição de operadores

(Adaptado de Odencrantz, 1991 [14]). . . . . . . . . . . . . . . . . . . . . . 46

4.1 Ilustração do domı́nio bidimensional com condições de contorno. . . . . . . . . 60

4.2 Ilustração do domı́nio unidimensional com condições de contorno. . . . . . . . 60
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1 INTRODUÇÃO

Águas subterrâneas representam uma importante reserva de água doce para atender

demandas como o abastecimento humano, dessedentação animal, irrigação, indústria e

lazer. Contudo os diversos usos das águas estão condicionados ao atendimento de padrões

de qualidade, principalmente, quando utilizadas para o consumo humano. Deste modo, a

posśıvel contaminação deste tipo de água gera grandes preocupações relacionadas a saúde

pública e a conservação ambiental.

No Brasil, recentemente, em 03 de abril de 2008, o Conselho Nacional do Meio

Ambiente (CONAMA) publicou a Resolução no 396 [1], que dispõe sobre a classificação e

diretrizes ambientais para o enquadramento, prevenção e controle da poluição das águas

subterrâneas. Nesta resolução são apresentados os valores máximos de concentração

permitidos para os parâmetros de qualidade da água com maior probabilidade de

ocorrência para cada um dos usos considerados preponderantes. Segundo essa Resolução,

quaisquer tipos de disposição de reśıduos ou efluentes nos solos não poderão conferir às

águas subterrâneas caracteŕısticas em desacordo com o seu enquadramento.

As atividades antrópicas geram reśıduos e efluentes que podem variar o grau de

toxicidade de acordo com os insumos utilizados e processos empregados. A instalação

de atividades potencialmente poluidoras em áreas de recarga de águas subsuperficiais

representam um grande risco à manutenção da qualidade desse recurso. Assim, a questão

da qualidade das águas de subsuperf́ıcie vem se tornando cada vez mais importante no

gerenciamento dos recursos h́ıdricos [2].

O acondicionamento inadequado de reśıduos sólidos sanitários ou industriais (Figura

1.1, a), o lançamento de efluentes sem tratamento prévio ou o vazamentos em dutos e

tanques de armazenamento de combust́ıveis (Figura 1.1, b), são ocorrências que podem

levar à contaminação dos solos e águas subterrâneas. Segundo o Programa de Pesquisas

em Saneamento Básico (PROSAB) [3], o lixiviado gerado nos aterros sanitários, por

exemplo, pode conter matéria orgânica solubilizada, nutrientes como nitrogênio e fósforo,

ácidos orgânicos voláteis, metais pesados como cádmio, zinco e mercúrio, e organoclorados

provenientes do descarte de inseticidas e/ou agrotóxicos, além de microrganismos. Quando

lançado diretamente no ambiente o lixiviado de aterro sanitário pode causar danos,
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principalmente, aos recursos h́ıdricos. Esse tipo de efluente pode causar a eutrofização

de corpos h́ıdricos, ou seja, pode proporcionar um aporte de nutrientes como nitrogênio

e fósforo aumentando a produção de biomassa e reduzindo a quantidade de oxigênio

dissolvido, alterando as condições do ambiente aquático de aeróbio para anaeróbio.

Nível freáticoZona Vadosa

Zona saturada

Infiltração

Impermeável

Rio

Poços

(a)

Resíduos sólidos

Vazamento de
Lixiviado

Nível freático

Zona Vadosa

Zona saturada
Fluxo de água

Infiltração

Poço Vazamento de
Combustível

(b)

Figura 1.1: Exemplos de contaminação das águas subterrâneas (Adaptado de Bear &
Cheng, 2010 [4]).

No caso do vazamento de combust́ıveis automotivos, os compostos de maior

interesse para a saúde pública são os hidrocarbonetos monoaromáticos do grupo

BTEX (Benzeno, Tolueno, Etilbenzeno e Xilenos). Esses compostos têm reconhecida

toxicidade e mobilidade em ambientes de subsuperf́ıcie [5, 6, 7]. A identificação de

vazamentos de derivados do petróleo é fundamental, principalmente, próximo de áreas

onde as águas subterrâneas são usadas como fonte de abastecimento para o consumo

humano. Entretanto, normalmente o armazenamento de combust́ıveis é feito em tanques

subterrâneos o que dificulta a identificação de posśıveis vazamentos.

Nesse sentido, buscam-se representações mais fiéis dos fenômenos que governam o

transporte de substâncias naturais ou antrópicas, presentes em águas de subsuperf́ıcie. A

geração de conhecimento sobre a evolução dessas substâncias em ambientes subterrâneos

pode auxiliar na elaboração das poĺıticas de gerenciamento de recursos h́ıdricos, visando
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à prevenção e controle da poluição das águas subterrâneas bem como fornecer orientação

para a remediação de áreas já contaminadas. O estudo dos mecanismos que governam

esse fenômeno, que é de interesse para a engenharia ambiental, requer conhecimento

multidisciplinar. A modelagem matemática e simulação computacional podem então

ser utilizadas como ferramentas de auxilio na compreensão e previsão da migração de

contaminantes em ambientes subsuperficiais.

No Brasil, o enquadramento dos corpos h́ıdricos em classes segundo os usos

preponderantes é um instrumento da Poĺıtica Nacional de Recursos Hı́dricos [8]. As águas

subterrâneas também estão sujeitas a esse enquadramento e devem ter os valores de alguns

parâmetros dentro das faixas estipuladas para a classe na qual foram enquadradas [1].

Em levantamentos que precedem a instalação de um empreendimento potencialmente

poluidor, por exemplo, a simulação computacional pode auxiliar prevendo alterações nas

concentrações de contaminantes em eventos de vazamentos ou disposição inadequada

de efluentes e reśıduos, apontando quais medidas preventivas devem ser adotadas antes

da instalação do empreendimento, ou indicando que o local não é apropriado para sua

instalação.

Uma grande variedade de técnicas f́ısicas, qúımicas e biológicas têm sido utilizada

na remoção ou atenuação de contaminantes presentes em solos e águas subterrâneas.

Processos de oxidação qúımica são empregados frequentemente em locais com elevadas

concentrações de contaminante, pois promovem uma rápida degradação dos mesmos.

Esses processos também podem ser utilizados como uma etapa de pré-tratamento,

promovendo melhores condições para o emprego de outras técnicas, como os tratamentos

biológicos. Dentre os processos de oxidação qúımica, os processos oxidativos avançados

(POAs) destacam-se como uma alternativa promissora, já que têm potencial para destruir

em curtos peŕıodos de tempo contaminantes considerados de dif́ıcil degradação [9]. Os

reagentes de Fenton (H2O2 e Fe2+), por exemplo, possuem reconhecida eficiência na

remoção de contaminantes em solos, onde a presença natural de espécies de ferro possibilita

o uso da técnica de Fenton apenas pela adição do agente oxidante (peróxido de hidrogênio)

[6, 10].

A biorremediação é um processo utilizado para a remediação de áreas contaminadas,

pelo qual, os contaminantes são degradados por microrganismos de ocorrência natural ou

introduzidos artificialmente (microrganismos cultivados). Em ambientes subsuperficiais,
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geralmente, encontram-se bactérias, fungos, algas e protozoários [11], dos quais as

bactérias são as mais importantes para a degradação de contaminantes em águas

subterrâneas [9]. No processo de degradação biológica os compostos orgânicos (doador

de elétrons) são oxidados, perdendo elétrons para um aceptor final (aceptor de elétrons).

Diferentes substâncias podem ser utilizadas como aceptor de elétrons. Dentre elas, pode-

se citar: oxigênio (O2), ı́on nitrato (NO−

3 ), sulfato (SO
−2
4 ), carbonato (CO2−

3 ), entre outras

[12]. Em alguns casos é conveniente o uso do oxigênio como aceptor de elétrons, pois os

produtos finais da biodegradação aeróbia são o dióxido de carbono (CO2) e água (H2O),

que são inertes no meio. Entretanto, devido a baixa solubilidade do oxigênio e do seu

rápido consumo pelos organismos aeróbios pode ser necessária a injeção de oxigênio no

meio. Outra alternativa é utilizar a bioestimulação anaeróbia [7], cujos produtos podem

ser: o ı́on nitrito (NO−

2 ), óxido nitroso (N2O
−

2 ), nitrogênio gasoso (N2), ácido sulf́ıdrico

(H2S), metano (CH4), entre outros, dependendo do microrganismo e do receptor de

elétrons por esse utilizado [12].

A técnica de atenuação natural para a degradação dos contaminantes é um processo

passivo, ou seja, os contaminantes são degradados ou imobilizados por processos naturais

de diversas naturezas sem a intervenção humana. Nesse caso, a destruição dos

contaminantes de interesse é realizada, principalmente, pela ação de microrganismos

[9]. Na atenuação natural, bem como nas demais técnicas, o monitoramento da área

contaminada e a previsão da evolução da pluma de contaminação são imprescind́ıveis

para evitar que águas contaminadas sejam utilizadas, principalmente, no abastecimento

para consumo humano. Assim, a modelagem matemática e a simulação computacional

mostram-se, claramente, como instrumentos de aux́ılio na previsão da evolução da

contaminação, no desenvolvimento de tecnologias de remediação e no planejamento e

escolha da técnica para a remediação de uma determinada área contaminada.

Os modelos permitem a simulação de diversos cenários em função das mudanças

ambientais ou intervenções antrópicas, auxiliando na tomada de decisão. Além disso,

a modelagem de problemas ambientais contribui para uma melhor compreensão dos

mecanismos que governam os fenômenos naturais associados.

A modelagem do transporte de contaminantes em ambiente subsuperficial envolve

propriedades hidrodinâmicas de fluxo no meio e reações (geração e/ou consumo) das

substâncias transportadas. A evolução da concentração das substâncias é governada
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por mecanismos f́ısicos de advecção e dispersão hidrodinâmica além de reações que

podem ser de natureza f́ısica, qúımica ou biológica, dependendo das caracteŕısticas da

substância e do meio. Para os contaminantes orgânicos o principal fator de reação são

os processos biológicos [13]. Além desse, devido à grande área interfacial entre o fluido

(água) e os sólidos (solo ou rocha), podem atuar também mecanismos de transferência de

massa das substâncias entre o fluido e os sólidos (sorção/dessorção, comumente chamado

simplesmente de sorção) [14, 15].

Diferentes tipos de modelos de taxa de biodegradação e sorção são empregados para

o transporte de contaminantes na subsuperf́ıcie. Os mecanismo de reação ocorrem

simultaneamente durante o transporte e podem possuir comportamento não linear. Para

sorção, segundo Barry et al. [13] os dois modelos mais comumente usados são o modelo

de equiĺıbrio local e o modelo cinético de primeira ordem. Já para a biodegradação,

os modelos de cinética Monod apresentam-se como os mais adequados para descrever a

degradação de uma ampla variedade de substâncias em águas subterrâneas sob as mais

diversas condições ambientais [13, 16].

Existem vários estudos numéricos sobre o transporte de contaminantes em

subsuperf́ıcie. Alguns estudos apresentam modelos desconsiderando o acoplamento entre

os processos reativos de sorção e biodegradação ou ainda desconsiderando que os dois

processos possam ter comportamento não linear. Na literatura encontram-se alguns

modelos representando apenas reações de degradação [17, 18, 19, 20], considerando apenas

sorção de equiĺıbrio [21] ou sorção de não equiĺıbrio [22]. Outros trabalhos apresentam

modelos com cinéticas de sorção em equiĺıbrio e não equiĺıbrio acopladas [23, 24, 25, 26, 27],

contudo, desconsideram as reações de decaimento da biodegradação.

Modelos mais completos, levando em conta biodegradação e sorção de equiĺıbrio

acopladas podem ser encontrados em [14, 28, 29, 30, 31, 32] ou ainda utilizando sorção

de não equiĺıbrio ao invés da sorção em modo de equiĺıbrio [33]. O acoplamento entre

biodegradação linear, sorção de equiĺıbrio e não equiĺıbrio também são encontrados na

literatura [34, 35, 36]. Contudo, modelos lineares de biodegradação podem levar a erros

significativos na predição do comportamento da pluma de contaminação [37]. Além

disso, modelos de sorção lineares mostram-se inadequados para descrever muitos sistemas

subsuperficiais, ao passo que modelos não lineares como o de Freundlich revelam-se mais

adequados para a maioria dos sistemas [13]. Um modelo englobando reações não lineares,
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com cinética Monod de biodegradação, sorção em modo de equiĺıbrio e sorção em modo

de não equilibrio ocorrendo simultaneamente, abordando o caso unidimensional, pode ser

encontrado nos trabalhos de Couto, 2006 [38] e Couto & Malta, 2008 [39].

Os modelos de transporte apresentados neste trabalho são obtidos a partir do balanço

de massa na escala macroscópica do volume elementar representativo. Este problema é

representado por um sistema de equações diferenciais parciais não lineares de advecção-

difusão-reação, acopladas pelas reações de biodegradação e de sorção em modo de não

equiĺıbrio. Leva-se em conta no modelo que a biomassa está fixa na fase sólida, ou

seja, apenas o doador e o aceptor de elétrons são transportados pelo fluxo hidrodinâmico

(advecção e dispersão hidrodinâmica).

No modelo adota-se que os microrganismos são estritamente aeróbios, ou seja, utilizam

o oxigênio como aceptor final de elétrons. A biodegradação é representada por uma

cinética Monod dual, na qual ambos os substratos, o contaminante (doador de elétrons) e

o oxigênio (aceptor de elétrons), contribuem para controlar o crescimento da biomassa do

sistema. Apesar da biomassa estar aderida à fase sólida, as concentrações dos substratos

dispońıveis para os microrganismos são somente aquelas dissolvidas na água. A sorção,

fenômeno de troca de massa entre as fases, ocorre de duas formas simultaneamente durante

o transporte, uma em modo de equiĺıbrio local e outra modelada por uma cinética de

primeira ordem, ambas descritas pela isoterma de Freundlich.

Tendo em vista que as escalas de tempo das reações são, normalmente, menores do

que as do transporte-advectivo-difusivo, aplica-se uma metodologia de decomposição de

operadores (DO) [14, 40, 39]. Deste modo, o problema é resolvido em dois passos:

no primeiro resolve-se o problema do transporte do contaminante e do oxigênio e,

posteriormente, com um passo de tempo menor resolvem-se pontualmente as reações.

Mesmo com a aplicação da decomposição de operadores, o termo da reação de sorção

em modo de equiĺıbrio permanece acoplado à EDP do transporte. Assim, no primeiro

passo, tem-se duas equações diferenciais parciais (EDP’s) independentes, uma linear

representando o transporte do aceptor de elétrons e a outra não linear para o doador

de elétrons. Na segunda etapa, resolve-se um sistema de equações diferenciais ordinárias

(EDO’s) não lineares acopladas representando as reações de biodegradação e sorção em

modo de não equiĺıbrio.

O sistema de EDP’s é aproximado utilizando o método dos elementos finitos para
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a discretização espacial aliado a um método da famı́lia trapezoidal generalizada para a

discretização temporal [41, 42]. O método de Newton [43] foi utilizado para tratar a

não linearidade gerada pela sorção de equiĺıbrio no problema do transporte do doador

de elétrons. No segundo passo da decomposição de operadores, o sistema de EDO’s das

reações foi aproximado por um método de Runge-Kutta de quarta ordem [43, 44].

Neste trabalho investiga-se o transporte de contaminantes orgânicos em ambientes

subterrâneos saturados sob influência das reações não lineares de biodegradação e sorção

em modo de equiĺıbrio e não equiĺıbrio. Dessa forma, a principal finalidade deste trabalho

é contribuir no desenvolvimento de modelos matemáticos e ferramentas numéricas para

simulação computacional visando sua utilização na prevenção, remediação e controle da

poluição das águas subterrâneas. Assim, os seguintes objetivos espećıficos são propostos:

i. Discutir alguns dos diferentes tipos de modelos para reações de biodegradação e

sorção acoplados ao transporte em ambientes subsuperficiais saturados;

ii. Apresentar uma ferramenta computacional para a solução do problema do

transporte reativo em um domı́nio bidimensional;

iii. Verificar o código desenvolvido comparando suas respostas com resultados, anaĺıticos

e numéricos dispońıveis na literatura;

iv. Investigar através de simulações a influência dos parâmetros associados às reações

de biodegradação e sorção em domı́nios bidimensionais.

O trabalho está organizado em seis caṕıtulos. No Caṕıtulo 2 são discutidos os

mecanismos envolvidos no transporte de solutos em meios porosos. Nesse caṕıtulo,

primeiramente, demonstra-se a obtenção das equações gerais para o transporte advectivo-

difusivo em meios porosos. Posteriormente, são discutidos os fenômenos reativos de

sorção e biodegradação, apresentando alguns modelos clássicos na representação desses

fenômenos. No Caṕıtulo 3 aborda-se a metodologia da decomposição de operadores (DO)

utilizada na aproximação numérica do problema. Os métodos empregados na discretização

das duas etapas da decomposição de operadores também são apresentados neste caṕıtulo.

No Caṕıtulo 4 são apresentados modelos e cenários utilizados nas simulações numéricas.

Resultados referentes aos experimentos computacionais unidimensionais e bidimensionais

são apresentados e discutidos no Caṕıtulo 5. E finalmente, no Caṕıtulo 6 algumas

conclusões são apresentadas.
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2 MODELAGEM

Neste caṕıtulo abordam-se os mecanismos envolvidos no transporte de solutos em meios

porosos. Inicialmente, apresentam-se algumas definições sobre meios porosos, e partindo

da lei do balanço de massa na escala macroscópica do volume elementar representativo,

demonstra-se a obtenção da equação geral para o transporte advectivo-difusivo em

meios porosos. Posteriormente, são apresentados os fenômenos reativos de sorção e

biodegradação que podem influenciar no transporte. No final do caṕıtulo apresenta-se

um modelo contemplando reações de biodegradação e sorção em modo de equiĺıbrio e não

equiĺıbrio acopladas ao transporte advectivo-difusivo.

2.1 Meios porosos

Solos e rochas são meios porosos que contem um certo percentual de espaços vazios (poros)

que podem ser ocupados por água ou outros fluidos. Na Figura 2.1 pode observar uma

ilustração de um meio poroso com um fluido ocupando os espaços vazios. Uma importante

propriedade dos meios poros é a conectividade dos poros, que permite o deslocamento

dos fluido através do meio poroso. Desta forma, a porosidade pode ser dividida em

porosidade total e porosidade efetiva, sendo a ultima de maior interesse em problemas

de transporte, pois representa a fração de espaços vazios interconectados, ou seja, que

permitem o deslocamento dos fluidos [45, 46].

Fase sólida

Meio poroso

Fase fluida

Figura 2.1: Ilustração de um meio poroso.
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Água subterrânea é o termo usado para definir toda a água encontrada abaixo da

superf́ıcie. Essa água pode ocorrer ocupando parcialmente ou totalmente os espaços

vazios, estando contida em zonas não saturadas ou saturadas, respectivamente. Nas zonas

não saturadas somente um parcela dos poros é ocupada pela água, o restante é preenchido

por ar.

O movimento da água em meios porosos é proporcional ao gradiente hidráulico e a

condutividade. A condutividade indica a habilidade que o fluido tem de deslocar-se no

meio poroso, esta propriedade não depende apenas do fluido, sendo uma combinação das

propriedades do meio poroso e do fluido que escoa através desse.

2.2 Mecanismos de transporte em meios porosos

O transporte de solutos em meios porosos pode ser dividido em dois subproblemas.

O primeiro é a determinação de um campo de velocidades (macroscópico), definido a

seguir como velocidade de Darcy [46]. A segunda etapa, já com o campo de velocidades

conhecido, consiste em determinar a evolução da concentração dos solutos de interesse.

Neste trabalho assume-se, como simplificação do problema, que o campo de velocidade é

conhecido e constante em todo o domı́nio, resolvendo-se apenas o problema do transporte.

O movimento de contaminantes em ambientes subterrâneos não depende apenas do

fluxo de fluido no qual a substância está dissolvida, mas também de outros processos

f́ısicos, qúımicos e biológicos. Segundo Marsily [45], são três os principais mecanismos

de migração: advecção, difusão molecular e dispersão mecânica. Contudo podem existir

mecanismos reativos capazes de influenciar no deslocamento das substâncias em um meio

poroso, modificando o balanço de massa durante o transporte. Essas reações podem

ocorrer devido a mecanismos f́ısicos, geoqúımicos, radiológicos e biológicos.

2.2.1 Balanço de massa

O desenvolvimento da equação do transporte de solutos em meios porosos envolve

as leis de conservação da massa, momento e energia [46, 45, 47]. Entretanto, neste

trabalho considera-se que o meio encontra-se sob condições isotérmicas, e que o campo de

velocidades é conhecido em todo o domı́nio, assim, as únicas equações que precisam ser

desenvolvidas são as referentes ao balanço de massa e reações.
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Para um volume de controle representativo de um meio poroso Ω com fronteira ∂Ω

(Figura 2.2), o balanço de massa da substância, ou espécie, j dissolvida na fase α é dado

pela equação 2.1.

n

Figura 2.2: Volume de controle representativo Ω.

d

dt
Mα

j = −ṁα
j +

∫

Ω

Rα
j dV (2.1)

Onde, o termo do lado esquerdo representa a variação da quantidade de massa do soluto

j na fase α dentro do domı́nio Ω. No lado direito da equação 2.1, o primeiro termo

representa o fluxo mássico do soluto j na fase α que atravessa a fronteira ∂Ω e o segundo

uma fonte ou sumidouro de soluto j na fase α [48].

Para o desenvolvimento das equações macroscópicas do transporte, substitúı-se a

quantidade de massa Mα
j [M ], pela concentração volumétrica média relativa ao volume

total [M L−3], que é escrita em termos de concentração em cada fase. Assim, definindo V

e Vα como volume total e volume ocupado pela fase α em [L3], respectivamente, escreve-se:

Mα
j

V
=

Mα
j

Vα

Vα

V
= Cα

j φα (2.2)

onde a concentração do soluto j na fase α é dada por,

Cα
j =

Mα
j

Vα

(2.3)

e a fração volumétrica, da fase α relativa ao volume total por,

φα =
Vα

V
(2.4)
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Reescrevendo o balanço de massa, equação (2.1), para a concentração volumétrica

definida acima:

d

dt

∫

Ω

(Cα
j φα)dV +

∫

∂Ω

(Cα
j φαv

α
j ) · n dA =

∫

Ω

Rα
j dV (2.5)

onde, aplicando-se a regra de Leibnitz e o teorema da divergência, ao primeiro e ao segundo

termo do lado esquerdo, respectivamente, tem-se

∫

Ω

∂

∂t
(Cα

j φα)dV +

∫

Ω

∇ · (Cα
j φαv

α
j )dV =

∫

Ω

Rα
j dV (2.6)

que remete a seguinte forma pontual para o balanço de massa do soluto j na fase α:

∂

∂t
(Cα

j φα) +∇ · (Cα
j φαv

α
j ) = Rα

j (2.7)

Assumindo que a velocidade vα
j é uma combinação de duas componentes, uma de fluxo

advectivo (vα), que representa a velocidade da fase α e a outra de fluxo difusivo (uα
j )

representando a velocidade do soluto j em relação à fase α [46, 45], chega-se a:

vα
j = vα + uα

j (2.8)

assim, reescrevendo o balanço de massa pontual, encontra-se:

∂

∂t
(Cα

j φα) +∇ · (Cα
j φαvα) +∇ · (Cα

j φαu
α
j ) = Rα

j (2.9)

O terceiro termo do lado esquerdo da equação (2.9) representa o fluxo de dispersão da

substância j em relação a fase α. O vetor de dispersão resultante depende da magnitude

do fluxo da fase α e do gradiente de concentração na direção desse fluxo [49]. Esse termo

tem sinal negativo, pois o movimento ocorre das áreas de maior concentração para as de

menor concentração. Assim, a equação geral para o transporte em um meio poroso tem

a seguinte forma:

∂

∂t
(Cα

j φα) +∇ · (Cα
j φαvα)−∇ · (Dα

j ∇Cα
j ) = Rα

j (2.10)

onde, Dα
j é um tensor de dispersão somado a um coeficiente de difusão molecular dαj ,
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ambos dados em [L2 T−1].

Considerando a hipótese de que a matriz porosa é ŕıgida e encontra-se saturada

pelo fluido, ou seja, no domı́nio encontram-se apenas duas fases que ocupam frações

volumétricas constantes ao longo do tempo (α = f, s), pode-se definir que:

φf + φs = 1 (2.11)

Desta forma, conhecendo apenas a porosidade do meio (φ) pode-se determinar as frações

volumétricas ocupadas por cada uma das fases presentes:

φf = φ (2.12)

e

φs = 1− φ (2.13)

Além disso assumindo que a velocidade média do fluido no meio poroso [L T−1] é dada

pela Lei Darcy, a seguinte relação é adotada:

vd = φvα (2.14)

onde, vd é a velocidade de Darcy. Com essas hipóteses, reescrevendo a equação (2.10)

para α = f , chega-se a:

φ
∂Cf

j

∂t
+ vd · ∇Cf

j + Cf
j ∇ · vd −∇ · (Dj∇Cf

j ) = Rf
j (2.15)

Sendo ainda o fluido incompresśıvel e desconsiderando quaisquer tipos de reação sobre o

mesmo, tem-se:

∇ · vd = 0 (2.16)

assim, pode-se escrever a seguinte equação para o transporte de um soluto j dilúıdo na
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fase fluida:

φ
∂Cf

j

∂t
+ vd · ∇Cf

j −∇ · (Dj∇Cf
j ) = Rf

j (2.17)

Em se tratando de um fluxo de fluido uniforme e orientado na direção x, podemos escrever

o tensor de dispersão hidrodinâmica Dj para três dimensões da seguinte forma,

Dj =











DjL 0 0

0 DjT 0

0 0 DjT











(2.18)

onde, os componentes DjL e DjT , são combinações do coeficiente de difusão molecular

com a dispersão transversal e longitudinal ao fluxo de fluido, respectivamente [45, 49], ou

seja:

DjL = φdj + βLj
| vd (2.19)

DjT = φdj + βTj
| vd (2.20)

onde, dj é o coeficiente de difusão molecular [L2 T−1], βLj
e βTj

são a dispersividade

longitudinal e transversal ao fluxo [L], respectivamente. |vd| representa a magnitude do

vetor de fluxo de fluido [L T−1].

Para a avaliação da evolução da concentração de soluto na fase sólida, além da hipótese

de que a matriz porosa é ŕıgida, também assume-se que não existe dispersão da j-ésima

substância quando esta estiver aderida na fase sólida. Desta forma, como vs = 0 eDs
j = 0,

partindo da equação (2.10), pode-se escrever a seguinte equação para o balanço pontual

de massa do soluto j na fase sólida:

(1− φ)
∂Cs

j

∂t
= Rs

j (2.21)

Existem diferentes formas de representação das equações que governam o transporte

de substâncias em águas subterrâneas. Simplificações como a divisão das equações (2.17)

e (2.21) por φ e (1 − φ), respectivamente, é a mais comumente encontrada na literatura
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[14, 24, 26, 28, 30, 35, 39, 50]. Entretanto, para manter em evidência os parâmetros

utilizados nas equações envolvidas no problema, neste trabalho são evitadas simplificações.

2.3 Reações

As reações que exercem influência no transporte de uma substância em um meio poroso

podem ter natureza f́ısica, geoqúımica, radiológica e biológica [45]. Essas interações

reativas têm grande importância no estudo da migração de contaminantes em meios

subsuperficiais, já que alteram o comportamento da evolução da contaminação durante

o seu deslocamento [13, 15, 39, 51, 4]. Dependendo da reação a quantidade total de

massa das substâncias no sistema, pode ou não manter-se constante, ou seja, podem ser

conservativas ou não conservativas.

Tratando-se do transporte de substâncias orgânicas, a biodegradação é o principal

fator de decaimento de massa [13]. Esse processo consiste em reações oxidação/redução

(redox), ou seja, reações entre duas substâncias, onde uma é oxidada (adição de oxigênio) e

outra é reduzida (remoção de oxigênio). Nas reações redox intermediadas biologicamente,

os compostos orgânicos são as substâncias oxidadas, perdendo elétrons para um aceptor

final, que é reduzido. Assim, os contaminantes orgânicos oxidados por organismos

vivos transformam-se em diferentes compostos que podem variar de acordo com as

caracteŕısticas ambientais do meio.

Em ambientes subsuperficiais existe uma grande área interfacial entre o fluido e

os sólidos. Deste modo, durante o transporte podem atuar diversos mecanismos

de transferência de massa das substâncias entre as fases [14]. O fenômeno de

sorção/dessorção, chamado simplesmente de sorção, é uma forma genérica de tratar as

trocas entre as fases fluida e sólida, pois dependendo das interações e da liberdade com que

as substâncias migram de uma fase para outra pode-se distinguir fenômenos de diferentes

naturezas [15].

Os termos do lado direito das equações (2.17) e (2.21) representam as interações

reativas que agem durante o transporte. Supondo que duas formas de reação atuam

no sistema, biodegradação e sorção, temos

Rα
j = Rαs

j +Rαbio

j (2.22)
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onde, Rαs

j e Rαbio

j representam: a reação de sorção e a biodegradação da espécie j na fase

α, respectivamente.

Deste ponto em diante assume-se que as espécies de biomassa existentes no meio são

representadas pelo ı́ndice i e os substratos, substâncias utilizadas no crescimento biológico,

são representados pelo ı́ndice j. Em um meio poroso as espécies podem ocorrer em ambas

as fases, e em alguns casos em concentrações despreźıveis em uma delas. As espécies de

microrganismos, por exemplo, encontram-se em sua grande maioria apenas aderida à fase

sólida, ou seja, Cf
i ≈ 0, que implica em Rfbio

i ≈ 0 e Rss
i ≈ 0. Entretanto, as concentrações

dos substratos dispońıveis para o crescimento dos microrganismos são somente aquelas

dissolvidas na fase fluida [38]. Isto é, substâncias sorvidas na fase sólida geralmente não

podem ser utilizadas pelos organismos, logo Rsbio
j = 0. Deste modo, a concentração da

i-ésima espécie de biomassa na fase sólida é decorrente exclusivamente das reações de

consumo biológico dos substratos dissolvidas na fase fluida, tal que

Rsbio
i = −

∑

j

Rfbio
j (2.23)

Cabe ressaltar que as reações biológicas de consumo dos substratos (Rfbio
j ) não

são reverśıveis e as substâncias utilizadas pelos microrganismos são transformadas em

diferentes compostos, que são desconsiderados nessa modelagem. Portanto, os substratos

encontradas na fase sólida são provenientes unicamente da reação de sorção, da tal forma

que,

Rfs
j = −Rss

j (2.24)

Assim, a partir das equações (2.17) e (2.21) e das observações feitas acima, escreve-se

o transporte do j-ésimo subtrato e da i-ésima espécie de biomassa, como,

φ
∂Cf

j

∂t
+ vd · ∇Cf

j −∇ · (Dj∇Cf
j ) = Rfbio

j +Rfs
j (2.25)

(1− φ)
∂Cs

j

∂t
= Rss

j (2.26)
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(1− φ)
∂Cs

i

∂t
= Rsbio

i (2.27)

Por simplificação da notação, substituem-se Cf
j , Cs

j e Cs
i por Cj, Sj e Bi,

respectivamente. Então reescreve-se o sistema de equações para o transporte como

φ
∂Cj

∂t
+ vd · ∇Cj −∇ · (Dj∇Cj) = Rfbio

j +Rfs
j (2.28)

(1− φ)
∂Sj

∂t
= Rss

j (2.29)

(1− φ)
∂Bi

∂t
= Rsbio

i (2.30)

2.3.1 Sorção

Nos sistemas subsuperficiais geralmente ocorrem reações de sorção na interface entre

as fases. Pode-se distinguir duas grandes categorias do fenômeno de sorção/dessorção

(chamada simplesmente de sorção): a adsorção e a absorção. Na adsorção a acumulação

de soluto geralmente restringe-se à superf́ıcie das part́ıculas de sólido ou à interface entre

a solução e a fase sólida. Em contrapartida, a absorção é o processo em que o soluto

transferido de uma fase para outra, penetra na fase absorvente [15]. Embora existam

diferenças entre adsorção e absorção e outras formas de retenção do soluto na matriz

porosa, aqui será utilizado o conceito geral de sorção, que não leva em consideração a

natureza do processo.

A transferência de substância para a fase sólida durante o transporte reduz a velocidade

da frente de contaminação em relação a velocidade do fluido, retardando o avanço das

substâncias transportadas. Sob o efeito da sorção os mecanismos de difusão, responsáveis

pela suavização da frente de contaminação, também tornam-se mais lentos [52, 53].

As trocas entre as fases podem ocorrer de duas formas, sorção em modo de equiĺıbrio,

que ocorre instantaneamente, e em modo de não equiĺıbrio, que demanda um determinado

tempo para atingi o equiĺıbrio [22, 25, 26, 27, 39, 52, 54, 55]. Na sorção de equiĺıbrio,

para qualquer mudança na concentração do soluto em uma fase tem-se uma instantânea
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mudança na concentração de soluto na outra fase. Em modo de não equiĺıbrio, para

uma alteração na concentração do soluto em uma das fases o equiĺıbrio não é alcançado

instantaneamente, e sim aproximado a uma taxa que em geral depende das concentrações

em ambas as fases [45, 4]. Segundo Barry et al. [13] os dois modelos mais comumente

usados são o modelo de equiĺıbrio local e o modelo cinético de primeira ordem.

Os modelos de sorção de equiĺıbrio local possuem a seguinte forma geral:

λe = F (Cj) =
[massa do soluto j sorvida instantânemente]

[massa de sólidos seca]
(2.31)

onde, λe é a fração de massa sorvida instantaneamente [adimensional] e F (Cj) é a

isoterma de equiĺıbrio da concentração do soluto j entre as fases. Essa função depende

da temperatura e denomina-se isoterma por se admitir que o sistema encontra-se a

uma temperatura constante, ou seja, em condições isotérmicas. De maneira geral a

determinação dos parâmetros para ajuste dos modelos de equiĺıbrio é realizada em

laboratório. Assim, os ensaios de determinação estão sujeitos à temperatura do local.

Quando o modelo de equiĺıbrio não é apropriado, diferentes tipos de modelos de sorção

podem ser empregados [56]. No entanto o modelo de cinética de primeira ordem mais

utilizado é

∂λs

∂t
= K (F (Cj)− λs) (2.32)

onde, a constante K é o coeficiente cinético de primeira ordem de troca de massa entre as

fases [T−1] e λs é a fração de massa da substância j aderida à fase sólida [adimensional],

dada por

λs =
[massa do soluto j sorvido na fase sólida]

[massa de sólidos seca]
(2.33)

A concentração do soluto j na fase sólida sorvida instantaneamente (Sα
j ) pode ser

determinada pela seguinte relação

Se
j = ρsλ

s (2.34)
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ou

Se
j = ρsF (Cj) (2.35)

onde, ρs é a massa espećıfica dos sólidos [M L−3]. O modelo cinético de primeira ordem

pode ser escrito como:

∂Sne
j

∂t
= K

(

ρsF (Cj)− Sne
j

)

(2.36)

2.3.1.1 Isotermas de sorção

Tipicamente nos modelos de sorção para sistemas de subsuperf́ıcie os efeitos da interação

entre múltiplos componentes dissolvidos são ignorados (j = 1, ..., número de substâncias

dissolvidas). Os modelos padrões de equiĺıbrio mais utilizados são: linear, Freundlich ou

Langmuir [34].

Assumindo que as trocas entre as fases têm um comportamento linear, a isoterma

possui a seguinte forma

F (Cj) = kdjCj (2.37)

onde, kdj é o coeficiente de partição (ou distribuição) de equiĺıbrio da concentração da

j-ésima substância entre as fases [L3 M−1]. Esse coeficiente depende das propriedades do

sólido e do soluto [45, 57].

O modelo de Freundlich é semelhante ao linear, entretanto o expoente que aparece

na isoterma, pode inserir uma não linearidade no modelo de transferência de massa das

substâncias entre as fases

F (Cj) = kfj(Cj)
pfj (2.38)

onde, kfj é o coeficiente de capacidade de sorção de Freundlich [L3pfj M−pfj ] e pfj o

coeficiente, adimensional, de energia de sorção de Freundlich. Na literatura encontram-se

valores de pfj entre 0, 7 e 1, 8, no entanto tipicamente empregam-se valores de pfj < 1 [58].

Quando pfj = 1 e kfj equivale ao coeficiente de distribuição kdj , o modelo de Freundlich

iguala-se ao modelo de sorção linear.



33

Na Figura 2.3 pode-se observar o comportamento da sorção para diferentes valores de

pfj , com a variação das concentrações de soluto. Quando a concentração do soluto na fase

fluida é igual a 1, 0 [M L−3], para qualquer pfj a fração de massa de equiĺıbrio sorvida na

fase sólida será igual ao coeficiente de capacidade de sorção de Freundlich (kfj). Para a

isoterma de Freundlich não linear, com pfj < 1 e Cf
j > 1 a substância sofre menos sorção

do que nos casos linear pfj = 1 e não linear com pfj > 1. O contrário pode ser observado

quando Cf
j < 1.
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Figura 2.3: Comportamento da Isoterma de Freundlich, equação (2.38), com kfj = 1 e
valores de pf indicados na legenda.

Outro modelo comumente utilizado é o de Langmuir [59], dado pela expressão

F (Cj) =
Q0

jkljCj

1 + kljCj

(2.39)

onde, klj é uma constante de sorção relacionada com a energia de ligação [L3 M−1] e

Q0
j é a quantidade máxima de soluto que pode ser sorvida por unidade de massa sólida

[adimensional] [52, 56]. Na Figura 2.4, pode-se observar o comportamento da isoterma de

Langmuir. Pela figura constata-se que a fração de massa sorvida na fase sólida é limitada

por Q0
j , ou seja, mesmo com o aumento da concentração na fase fluida o valor máximo de

fração de massa do soluto que pode ser sorvido na fase sólida é Q0
j .

Van Genuchten & Simunek [60], apresentam uma ampla variedade de modelos de
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Figura 2.4: Comportamento da Isoterma de Langmuir, equação (2.39), com klj = 1 e
valores de Q0

j indicados na legenda.

equiĺıbrio. Entretanto, o modelo de Freundlich é o mais frequentemente usado e adéqua-

se à maioria dos sistemas [13, 15].

2.3.2 Biodegradação

A biodegradação é o termo usado para definir processos em que espécies qúımicas são

transformadas em outros produtos por reações biológicas. O resultado das reações pode

ser mais tóxico ou menos prejudicial do que o original [4]. As reações de biodegradação

são intermediadas por microrganismos (tais como bactérias, fungos, algas e protozoários

[11]), que em meios subsuperficiais, encontram-se principalmente aderidos como uma fina

camada na superf́ıcie sólida, podendo ainda ser encontrados também em suspensão na

fase aquosa.

As reações de biodegradação são essencialmente reações de oxidação/redução (redox),

em que o composto orgânico (doador de elétrons) é oxidado e um aceptor de elétrons é

reduzido. Por esta reação os microrganismos degradam o contaminante, obtendo energia

para o desenvolvimento das atividades celulares e carbono para produção de biomassa.

Esse processo metabólico de obtenção de energia requer um aceptor de elétrons, que pode

variar dependendo do tipo de microrganismo envolvido na degradação.
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Os microrganismos heterotróficos (não produzem seu próprio alimento) são

predominantes em meios porosos. Dependendo das condições do meio, pode-se encontrar

organismos com diferentes rotas metabólicas, de acordo com o aceptor final de elétrons.

Organismos que usam oxigênio molecular (O2) como aceptor final na respiração são

denominados aeróbios, quando outra substância é utilizada a respiração é anaeróbia.

Exemplos de compostos utilizados como aceptores de elétrons na respiração anaeróbia

são: ı́on nitrato (NO−

3 ), sulfato (SO−2
4 ), carbonato (CO2−

3 ), entre outros [12].

Dentre os organismos aeróbios encontramos os aeróbios obrigatórios, que só vivem em

ambientes com abundância de oxigênio, e os microaerófilos, que sobrevivem mesmo em

ambientes com concentrações muito baixas de oxigênio. Organismos anaeróbios podem

ser: i) aerotolerantes, não utilizam oxigênio na respiração, contudo toleram a presença de

oxigênio, ii) obrigatórios, que desenvolvem-se somente na ausência de oxigênio, a presença

dessa substância pode inibir o crescimento ou matar esse organismos e iii) anaeróbios

facultativos, que na ausência de oxigênio realizam fermentação ou respiração anaeróbia,

e na presença de oxigênio realizam respiração aeróbia. Sendo a respiração aeróbia

preferencialmente utilizada, pois é mais rentável energeticamente para os microrganismos

[5, 12, 61].

Os principais substratos necessários para as atividades biológicas são: doador de

elétrons, aceptor de elétrons, e fontes de carbono e energia. Normalmente o contaminante

atua tanto como doador de elétrons quanto como fonte de carbono e energia [50, 62]. Além

desses, outros fatores também podem interferir na biodegradação. A fonte de carbono

e energia deve estar acesśıvel, ou seja, o contaminante deve estar dispońıvel para os

microrganismos. A presença de nutrientes, como nitrogênio (N), fósforo (P) e enxofre (S),

também é necessária para as funções celulares. Condições ambientais, como temperatura,

pH e salinidade, devem ser adequadas para proporcionar um melhor crescimento da

biomassa. A presença de microrganismos adaptados ao meio e em quantidades adequadas

também contribui para o consumo da matéria orgânica [9, 4, 63].

Essas reações bioqúımicas servem como base para o desenvolvimento de técnicas de

biorremediação de ambientes subsuperficiais. A conversão do contaminante em biomassa,

água, sais inorgânicos, dióxido de carbono e gases inertes é o objetivo principal da

biorremediação. Contudo, dependendo do tipo de contaminante a biorremediação pode ser

utilizada como uma forma de reduzir a toxicidade das substâncias, ou até mesmo reduzir



36

sua mobilidade, afim de impedir o deslocamento do contaminante por longas distâncias.

2.3.2.1 Modelos de biodegradação

Basicamente encontram-se três modelos conceituais para representar a distribuição

bacteriana em um meio poroso: estritamente macroscópico, microcolônias e o de biofilme.

Em todos eles, a biomassa é considerada fixa na matriz porosa e os substratos dispońıveis

para os microrganismos são somente os dissolvidos na fase fluida. A principal diferença

entre os modelos conceituais de distribuição está nas hipóteses assumidas em relação a

forma com que se dá o contato entre os microrganismos e os substratos [14, 64].

O modelo estritamente macroscópico foi proposto inicialmente para representar a

cinética de biodegradação com o crescimento de células suspensas na fase fluida em

bioreatores. Contudo, apesar de sua origem, esse modelo tem boa aceitação para

representar problemas em meios porosos, onde a maior parte da biomassa esta aderida

à fase sólida [13, 14, 33, 36, 37, 51, 63, 65, 66]. No modelo estritamente macroscópico

aplicado à meios porosos, os microrganismos, que estão fixos nas superf́ıcies dos grãos

sólidos, estão em contato direto com as substâncias dissolvidas na fase fluida [14].

Os modelos de microcolônias e biofilme diferem do modelo macroscópico pois possuem

uma camada de difusão externa impedindo o contato direto dos substratos com os

microrganismos. Além disso no modelo de biofilme a difusão interna também é levada em

consideração, ou seja, existe uma difusão molecular dentro do biofilme [14, 67]. Isso não

ocorre para o modelo de microcolônias, pois assume-se que as colônias de microrganismos

são pequenas o suficiente (10 a 100 organismos) para que a difusão interna seja despreźıvel

[14, 18, 29, 30, 64].

Os modelos também diferem quanto a distribuição da biomassa na matriz porosa. No

modelo de microcolônias os microrganismos estão aderidos à fase sólida em pequenas

colônias distribúıdas aleatoriamente. Já no modelo de biofilme os organismos estão

distribúıdos uniformemente na forma de um filme cobrindo toda a área superficial dos

sólidos. No modelo macroscópico não são adotadas hipóteses referentes à distribuição dos

organismos.

Neste trabalho, apenas o modelo estritamente macroscópico de distribuição será

utilizado. Esse modelo apresenta-se mais simples quando comparado com os demais, pois

o número de parâmetros envolvidos é menor. Além disso, em cenários de contaminação
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subsuperficial apresenta resultados semelhantes aos obtidos com modelos mais elaborados

como de biofilme [14].

Além do modelo conceitual de distribuição é necessário um modelo de biodegradação,

que geralmente é representado por reações cinéticas, ou seja, relacionando as taxas de

consumo dos substratos e de crescimento microbiológico às suas respectivas concentrações

[13, 68, 69, 70]. Alguns modelos desconsideram a relação de dependência entre as taxas

de consumo dos substratos e suas respectivas concentrações. Isso é, consideram apenas a

concentração da substância como fator determinante para a biodegradação. O que pode

ser válido em alguns casos, porém geralmente não é [13, 37].

Dois modelos modelos muito utilizados [16, 33, 37, 51, 65, 66], que consideram apenas

a concentração da substância com fator de influência para a degradação são o modelo

cinético de primeira ordem e o modelo de Michaelis-Menten. Para ambos os modelos a

reação depende apenas da concentração do contaminante, de modo que

dCj

dt
= −Rj(Cj) (2.40)

onde, por exemplo, pode-se empregar um modelo cinético de primeira ordem em que a

reação biológica é proporcional à concentração de contaminante [32], tal que:

Rj(Cj) = kj
1Cj (2.41)

onde, kj
1 é a taxa de degradação de primeira ordem [T−1]. Outra alternativa é substituir

a reação pelo modelo de Michaelis-Menten, dado por:

Rj(Cj) =
V j
mCj

Kj + Cj

(2.42)

onde, V j
m é a taxa de reação máxima de Michaelis-Menten [M L−3 T−1] (constante) e Kj

é denominada concentração de meia saturação [M L−3] (constante).

Modelos mais complexos de biodegradação podem ser obtidos considerando que a taxa

de biodegradação depende de outras substâncias e também da população microbiana.

Substâncias necessárias para a biodegradação que existem em abundância no meio, não

precisam ser inclúıdas no modelo, a não ser que sejam substâncias de interesse para o

problema. Por outro lado, substâncias encontrados em baixas concentrações (substrato
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limitante), geralmente são as que regulam a taxa de crescimento bacteriano e de utilização

dos substratos. Em alguns casos, pode-se encontrar ainda sistemas em que a cinética de

biodegradação está sujeita à múltiplos substratos limitantes.

A seguir serão apresentados modelos cinéticos com crescimento da biomassa

considerando a limitação por apenas um substrato, modelo de Monod simples, e por

múltiplos substratos, modelo de Monod multiplicativo. No modelos de Monod simples

apenas duas espécies são consideradas, a substância a ser degradada (doador de elétrons) e

a biomassa, onde o doador de elétrons é o substrato limitante, o aceptor de elétrons existe

em abundância, assim não é inclúıdo no modelo. No modelo de Monod multiplicativo três

espécies estão envolvidas, o doador de elétrons (contaminante), o aceptor de elétrons e a

biomassa bacteriana. Nesse modelo as substâncias limitantes são o doador e o aceptor de

elétrons [38].

O modelo de Monod simples é semelhante ao modelo de Michaelis-Menten (equação

(2.42)), no entanto inclúı taxas de crescimento e decaimento microbiológico [13, 37], tal

que

dC1

dt
= −R1(C1, B1) (2.43)

dB1

dt
= R2(C1, B1) (2.44)

R1(C1, B1) = µ1
mB1

(

C1

K1
h + C1

)

(2.45)

R2(C1, B1) = Yc1R1(C1, B1)−m(B1 − B10) (2.46)

onde, µ1
m é a taxa máxima de utilização do substrato [T−1], K1

h a concentração de meia

saturação de Monod [M L−3], Yc1 a constante adimensional de produção de biomassa. O

segundo termo do lado direito da equação (2.46) representa o decaimento da biomassa

(morte dos microrganismos), sendo B10 a concentração inicial de biomassa em [M L−3]

e m o coeficiente de decaimento [T−1]. Neste modelo observa-se que a concentração de

biomassa nunca é inferior à concentração inicial, B10 , de microrganismos no sistema.
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No modelo de Monod multiplicativo ambos os substratos (doador e aceptor de elétrons)

contribuem para controlar o crescimento da biomassa, em uma cinética dual [13, 14, 18,

29, 30, 32, 33, 51, 65, 71, 72], ou seja,

dC1

dt
= −R1(C1, C2, B1) (2.47)

dC2

dt
= −R2(C1, C2, B1) (2.48)

dB1

dt
= R3(C1, C2, B1) (2.49)

R1(C1, C2, B1) = µ1
mB1

(

C1

K1
h + C1

)(

C2

K2
h + C2

)

(2.50)

R2(C1, C2, B1) =
Yc1

Yc2

R1(C1, C2, B1) (2.51)

R3(C1, C2, B1) = Yc1R1(C1, C2, B1)−m(B1 − B10) (2.52)

onde, µ1
m é a taxa de degradação máxima espećıfica [T−1], K1

h a concentração de meia

saturação de Monod [M L−3], Ycj a constante adimensional de produção de biomassa

referente a espécie de concentração Cj e m o coeficiente de decaimento da biomassa [T−1].

Os modelos de Michaelis-Menten e Monod tornam não linear e acoplado o problema

do transporte das substâncias envolvidas na biodegradação.

2.4 Transporte com sorção e biodegradação

Nesta seção apresenta-se o desenvolvimento do modelo utilizado nas simulações

computacionais. O modelo proposto, representa a evolução de um contaminante orgânico

sujeito a reações de sorção e biodegradação. Considera-se que existem concentrações do

contaminante em ambas as fases, na fase fluida, C1, e na fase sólida S1. Para que ocorra

a reação de biodegradação, além da substância oxidada (contaminante), é necessário
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também a concentração de alguma outra espécie que será reduzida, com concentrações

C2 e S2, nas fases fluida e sólida, respectivamente, e uma biomassa de concentração B1.

Para o desenvolvimento desse modelo, incluem-se nas equações (2.28)-(2.30) as reações de

sorção e biodegradação discutidas anteriormente. Assim, para o transporte dos substratos

com concentrações C1, C2 S1 e S2 e uma biomassa B1, pode-se escreve o seguinte sistema

de equações:

φ
∂C1

∂t
+ vd · ∇C1 −∇ · (D1∇C1) = Rfbio

1 +Rfs
1 (2.53)

(1− φ)
∂S1

∂t
= Rss

1 (2.54)

φ
∂C2

∂t
+ vd · ∇C2 −∇ · (D2∇C2) = Rfbio

2 +Rfs
2 (2.55)

(1− φ)
∂S2

∂t
= Rss

2 (2.56)

(1− φ)
∂B1

∂t
= Rsbio

1 (2.57)

Considerando que a sorção ocorre simultaneamente em modo de equiĺıbrio e não

equiĺıbrio, tem-se

S1 = Se
j + Sne

j (2.58)

Reescrevendo a equação (2.54), tem-se

(1− φ)
∂

∂t

(

Se
j + Sne

j

)

= Rss
1 (2.59)

ou seja,

(1− φ)
∂Se

j

∂t
+ (1− φ)

∂Sne
j

∂t
= Rss

1 (2.60)
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logo Rss
1 tem duas componentes,

Rsse
j +Rssne

j = Rss
j (2.61)

onde, o modelo de equiĺıbrio (Rsse
1 ) é dado por

Rsse
1 = (1− φ)ρs

∂F (C1)

∂t
(2.62)

e a sorção de não equiĺıbrio (Rssne

1 ) por

Rssne

1 = (1− φ)
∂Sne

1

∂t
(2.63)

∂Sne
1

∂t
= K (ρsF (C1)− Sne

1 ) (2.64)

Deste modo, o transporte do doador de elétrons é escrito da seguinte forma

φ
∂C1

∂t
+ vd · ∇C1 −∇ · (D1∇C1) + (1− φ)ρs

∂F (C1)

∂t
+ (1− φ)

∂Sne
1

∂t
= Rfbio

1 (2.65)

Fazendo

∂F (C1)

∂t
=

∂F (C1)

∂C1

∂C1

∂t
(2.66)

e colocando em evidência a derivada de C1 em relação ao tempo, chega-se a:

[

φ+ (1− φ)ρs
∂F (C1)

∂C1

]

∂C1

∂t
+ vd · ∇C1 −∇ · (D1∇C1) + (1− φ)

∂Sne
1

∂t
= Rfbio

1 (2.67)

ou ainda,

φ

[

1 +
(1− φ)

φ
ρs
∂F (C1)

∂C1

]

∂C1

∂t
+ vd · ∇C1 −∇ · (D1∇C1) + (1− φ)

∂Sne
1

∂t
= Rfbio

1 (2.68)

Utilizando a isoterma de Freundlich como modelo de equiĺıbrio (ou seja, F (C1) =

kf1(C1)
pf1 ), pode-se reescrever o primeiro termo da equação (2.68) como,

φF(C1)
∂C1

∂t
(2.69)
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onde,

F(C1) = 1 +
(1− φ)

φ
ρs kf1pf1(C1)

(pf1−1) (2.70)

Quando a isoterma for linear, isto é, pf1 = 1 obtém-se

F(C1) = rse = 1 +
(1− φ)

φ
ρs kf1 (2.71)

O termo rse é denominado coeficiente de retardo e representa o atraso no transporte da

substância, ou seja, a redução da velocidade com que essa se propaga no meio em relação

ao transporte sem sorção. Pela expressão (2.71) observa-se que quando a kf1 = 0, rse = 1,

ou seja, não existindo retardo no transporte neste caso. Do contrário, quando kf1 > 0,

existe retardo no transporte, e a massa de soluto fica sujeita a trocas entre as fases.

Neste trabalho o único aceptor de elétrons considerado é o oxigênio. O transporte

dessa substância é modelado pelas equações (2.55) e (2.56). Contudo, assume-se que o

oxigênio não sofre sorção (Rfs
2 = 0), logo tem-se a seguinte equação

φ
∂C2

∂t
+ vd · ∇C2 −∇ · (D2∇C2) = Rfbio

2 (2.72)

cuja única reação é de origem biológica (Rfbio
2 ).

A cinética de Monod multiplicativo será adotada para modelar as reações de

biodegradação. Deste modo, substituem-se os termos, Rfbio
1 , Rfbio

2 e Rsbio
1 pelas equações

do modelo de Monod multiplicativo. Por se tratar de um meio poroso as concentrações

das espécies são relativas a cada fase, assim, as equações de reação de biodegradação são

multiplicadas pelas respectivas frações volumétricas da fase onde ocorrem, tal que

Rfbio
1 = −φR1(C1, C2, B1) (2.73)

Rfbio
2 = −φR2(C1, C2, B1) (2.74)

Rfbio
1 = (1− φ)R3(C1, C2, B1) (2.75)
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Assim, reescrevendo o modelo dado pelas equações (2.53)-(2.57), inserindo as reações

de sorção e biodegradação discutidas acima escreve-se o seguinte problema:

Problema. Para um domı́nio poroso saturado Ω com contorno ∂Ω = ΓD ∪ ΓN em um

intervalo de tempo I = (0, T ], dados os coeficientes cinéticos das reações de sorção e

biodegradação, a massa espećıfica dos sólidos ρs, a porosidade φ, o campo de velocidade

vd : Ω → R
nde, os tensores de dispersão hidrodinâmica dos substratos 1 e 2 D1,D2 : Ω →

R
nde, as concentrações iniciais C̄10,C̄20,B̄10 : Ω → R, as concentrações no contorno ḡ1,ḡ2 :

ΓD → R e os fluxos normais ao contorno h̄1,h̄2 : ΓN → R, encontrar as concentrações

C1 : Ω → R, C2 : Ω → R e B1 : Ω → R tal que:

φF(C1)
∂C1

∂t
+ vd · ∇C1 −∇ · (D1∇C1) = −

(

(1− φ)
∂Sne

1

∂t
+ φR1(C1, C2, B1)

)

(2.76)

∂S1

∂t
= K (ρsF (C1)− Sne

1 ) (2.77)

φ
∂C2

∂t
+ vd · ∇C2 −∇ · (D2∇C2) = −φR2(C1, C2, B1) (2.78)

∂B1

∂t
= R3(C1, C2, B1) (2.79)

R1(C1, C2, B1) = µ1
mB1

(

C1

K1
h + C1

)(

C2

K2
h + C2

)

(2.80)

R2(C1, C2, B1) =
Yc1

Yc2

R1(C1, C2, B1) (2.81)

R3(C1, C2, B1) = Yc1R1(C1, C2, B1)−m(B1 − B10) (2.82)
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com condições iniciais:

C1 = C̄10 (2.83)

C2 = C̄20 (2.84)

B1 = B̄10 (2.85)

e de contorno:

C1 = ḡ1 (2.86)

C2 = ḡ2 (2.87)

D1∇C1 · n = h̄1 (2.88)

D2∇C2 · n = h̄2 (2.89)

onde, nde é o número de dimensões no espaço e n é o vetor normal à fronteira ∂Ω. ΓD

e ΓN são, respectivamente, as porções do contorno com concentração prescrita (condição

de Dirichlet) e fluxo prescrito (condição natural ou de Neumann).

O modelo apresentado nas equações (2.76)-(2.82) com condições iniciais e de contorno

(2.83)-(2.89), servirá como padrão no decorrer do trabalho. Empregou-se a isoterma de

Freundlich como modelo de equiĺıbrio local para ambas as reações de sorção, em modo

de equiĺıbrio e não equiĺıbrio. As reações de biodegradação são estritamente aeróbias e

são representadas pelo modelo de cinética Monod de taxa multiplicativa em uma cinética

dual entre doador (contaminante) e aceptor (oxigênio) de elétrons.
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3 MODELO NUMÉRICO

No item anterior foi apresentado o modelo de transporte advectivo-difusivo e alguns

tipos de reação que podem ocorrer em ambientes de subsuperf́ıcie. Dentre os vários

tipos de reações apresentados, optou-se pelo uso da a isoterma de Freundlich como

modelo de equiĺıbrio em ambas as cinéticas de trocas entre as fases (instantânea e não

instantânea). Para a biodegradação o modelo estritamente macroscópico com cinética

de Monod multiplicativo foi adotado. Deste modo, aqui será discutida a aproximação

numérica utilizada para resolução dos problemas.

Técnicas de resolução completamente acopladas, consideradas matematicamente mais

rigorosas, ou de decomposição de operadores podem ser empregadas para aproximar

a solução de problemas fisicamente acoplado pelas reações. O trabalho de Couto,

2006 [38] apresenta exemplos do emprego de ambas as metodologias para problemas de

transporte reativo em meios porosos. Nesse trabalho optou-se pelo uso da metodologia

da decomposição de operadores (DO), pois essa técnica é adequada para problemas com

escalas de tempo das reações diferentes das do transporte advectivo-difusivo [40].

Neste Caṕıtulo, primeiramente é apresentada a técnica de decomposição de operadores

(DO) empregada para separar os termos de reação dos termos do transporte advectivo-

difusivo. Na sequencia, também são apresentados o método dos elementos finitos e um

método da famı́lia trapezoidal generalizada, respectivamente, para discretização espacial

e temporal da primeira etapa da DO. Por fim apresenta-se o método de Runge-Kutta de

quarta ordem utilizado na discretização do segundo passo da DO.

3.1 Decomposição de operadores (DO)

A decomposição de operadores envolve a resolução dos termos advectivo e difusivo

separadamente dos termos de reação. Essa metodologia é atrativa pela facilidade com

que diferentes tipos de cinéticas de reação podem ser adicionadas ao problema. Além

disso, o desacoplamento é um modo computacionalmente eficiente de lidar com reações

complexas, especialmente nos casos em que as escalas de tempo das reações são muito

menores do que aquelas do transporte advectivo-difusivo [14, 40, 73, 74]. A metodologia de
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decomposição de operadores introduz um erro que é proporcional ao passo de tempo ∆t,

portanto, deve-se adotar pequenos passos de tempo para garantir a precisão da solução

[35, 71, 40, 73, 74].

O processo de resolução por decomposição de operadores aqui adotado, consiste em

aproximar o sistema de maneira sequencial em dois passos a cada intervalo de tempo

∆t (Figura 3.1). Em um primeiro passo obtém-se uma solução intermediária gerada a

partir dos mecanismos de advecção e difusão. Na segunda etapa de resolução divide-se o

intervalo de tempo ∆t em Nr intervalos menores (∆tr = ∆t/Nr), sendo então necessárias

Nr iterações para que se obtenha a solução definitiva do intervalo ∆t. Assim, utilizando

a aproximação intermediária como condição inicial para as cinéticas de reação, obtém-se

a solução final para o intervalo ∆t.
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Figura 3.1: Esquema representativo da metodologia da decomposição de operadores
(Adaptado de Odencrantz, 1991 [14]).

Para um intervalo de tempo de interesse I = (0, T ] com T dividido uniformemente

em passos de tempo, tal que ∆t = tn+1 − tn (∆t = T/N), aplica-se a decomposição

de operadores para o modelo apresentado nas equações (2.76)-(2.79). De tal forma que,

primeiramente, é resolvido o seguinte sistema de equações diferenciais parciais:

Passo 1.

φF(C1)
∂C1

∂t
+ vd · ∇C1 −∇ · (D1∇C1) = 0 (3.1)

φ
∂C2

∂t
+ vd · ∇C2 −∇ · (D2∇C2) = 0 (3.2)
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onde, F(C1) é dado pela equação (2.70). Posteriormente, utilizando como condição inicial

a solução intermediária obtida pelo sistema acima, aproxima-se a solução definitiva para

tn+1. Para isso, realizam-se Nr passos de tamanho ∆tr resolvendo as reações a partir do

seguinte sistema de equações:

Passo 2.

∂C1

∂t
= −

1

φF(C1)

(

(1− φ)
∂Sne

1

∂t
+ φR1(C1, C2, B1)

)

(3.3)

∂Sne
1

∂t
= K (ρsF (C1)− Sne

1 ) (3.4)

∂C2

∂t
= −R2(C1, C2, B1) (3.5)

∂B1

∂t
= R3(C1, C2, B1) (3.6)

onde, as reações R3(C1, C2, B1), R2(C1, C2, B1) e R3(C1, C2, B1) são dadas pelas equações

(2.80), (2.81) e (2.82), respectivamente.

No primeiro passo desta técnica, as equações (3.1) e (3.2) são resolvidas

independentemente das demais equações (3.3)-(3.6). Observa-se para o transporte do

doador de elétrons, que a isoterma de sorção pode tornar a equação (3.1) não linear, o

que demanda métodos apropriados para sua resolução, como por exemplo o Método de

Newton.

Conforme mencionado anteriormente, as reações de biodegradação são modeladas pela

cinética de Monod multiplicativa. Esse modelo torna não linear e acoplado o sistema de

equações diferenciais ordinárias da segunda etapa da metodologia de decomposição de

operadores.



48

3.2 Discretização da primeira etapa da DO:

Transporte

Na discretização espacial será utilizado o método dos elementos finitos com elementos

quadriláteros bilineares. Esse método envolve a divisão do domı́nio da solução em um

número finito de subdomı́nios, e o uso de uma formulação variacional para construir

uma aproximação da solução sobre o conjunto de elementos finitos [75, 41]. Para

definir a formulação variacional para as equações (3.1) e (3.2) definem-se dois espaços

de funções: funções peso e funções de aproximação (soluções admisśıveis) [42]. Problemas

predominantemente advectivos demandam técnicas de estabilização do tipo Streamline

upwind/Petrov-Galerkin (SUPG). Entretanto, na faixa de problemas propostos neste

trabalho não são necessárias estabilizações de SUPG. Desta forma, aqui os espaços das

funções são definidos no contexto da formulação padrão de Galerkin.

A primeira classe de funções W é composta das funções peso w, que são todas as

funções quadrado integráveis em H1(Ω), que possuem a primeira derivada quadrado

integrável [42]. Essa classe é definida por

W =
{

w ∈ H1(Ω) | w = 0 em ΓD

}

(3.7)

A coleção de funções aproximantes é semelhante a das funções teste [42]. Essa segunda

coleção Vj é definida como

Vj =
{

Cj ∈ H1(Ω) | Cj = ḡj em ΓD

}

, j = 1, 2 (3.8)

Fazendo Ω̄ = Ω ∪ Γ e discretizado o domı́nio Ω̄ em subdomı́nio Ω̄e, tal que

Ω̄ =
Ne
⋃

e=1

Ω̄e e
Ne
⋂

e=1

Ωe = ∅ (3.9)

onde, Ne o número de elementos. Utilizando a formulação de Galerkin pode-se aproximar

numericamente os problemas (3.1) e (3.2), com condições iniciais (2.83)-(2.85) e condições

de contorno (2.86)-(2.89), resolvendo-se o seguinte problema: encontrar Ch
1 ∈ Vh

1 e Ch
2 ∈
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Vh
2 | ∀ t ∈ I = (0, T ],

∫

Ω

wh

(

φF(Ch
1 )

∂Ch
1

∂t
+ vd · ∇Ch

1 −∇ · (D1∇Ch
1 )

)

dΩ = 0 ∀ wh ∈ Wh (3.10)

∫

Ω

wh

(

φ
∂Ch

2

∂t
+ vd · ∇Ch

2 −∇ · (D2∇Ch
2 )

)

dΩ = 0 ∀ wh ∈ Wh (3.11)

onde, Wh e Vh
j são subespaços de dimensões finitas dos espaços W e Vj, respectivamente,

isso é, Wh ⊂ W e Vh
j ⊂ Vj.

A função de aproximação Ch
1 para a solução C1 é

Ch
1 (x, t) =

nne
∑

j=1

c1,j(t)ϕj(x) (3.12)

onde, ϕj(x), j = 1, .., nne são as função de interpolação globais e c1,j(t) é a componente

da função C1 associada ao nó j de coordenadas x = {xi}, i = 1, .., nde. Os ı́ndices nne e

nde são: número de nós do elemento e número de dimensões no espaço, respectivamente.

Analogamente, define-se a função de aproximação Ch
2 para a solução C2

Ch
2 (x, t) =

nne
∑

j=1

c2,j(t)ϕj(x) (3.13)

onde c2,j(t) é a componente da função C2 relativa ao nó j. A função peso wh é definida

como

wh(x) =
nne
∑

j=1

wjϕj(x) (3.14)

Para o caso mais geral, ou seja, o problema não linear dado por (3.10), substituindo

as aproximações (3.12) e (3.14) obtém-se a seguinte forma semi-discreta escrita

matricialmente como

M1(C1)Ċ1 +K1C1 = 0 (3.15)

onde C1 e Ċ1 são, respectivamente, o vetor de concentração e sua derivada temporal. As

matrizes M1(C1) e K1 são resultantes da discretização espacial da equação (3.10).
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Para o problema linear do transporte do aceptor de elétrons, substitui-se (3.13) e (3.14)

em (3.11). A forma semi-discreta obtida nesse caso é semelhante a do problema (3.10).

M2Ċ2 +K2C2 = 0 (3.16)

Contudo, nota-se que a matriz M2, nesse caso, independe da concentração C2. Cabe

ressaltar ainda que as matrizes obtidas pela discretização espacial, representadas nas

equações (3.15) e (3.16), não terão necessariamente as mesmas dimensões, pois as

condições de contorno para os dois problemas podem ser distintas, o que pode influenciar

no número de incógnitas dos problemas.

A discretização espacial dos problemas (3.10) e (3.11) pelo método de Galerkin gera

dois sistema independentes de equações diferenciais ordinárias: um sistema não linear para

o transporte do doador de elétrons e um sistema linear para o problema do transporte do

aceptor de elétrons.

Para obtenção do problema completamente discreto utiliza-se um método da famı́lia

trapezoidal generalizada [41]. Desta forma discretiza-se temporalmente a equação (3.15)

por meio das seguintes equações:

M1(C1,n+1)Ċ1,n+1 +K1C1,n+1 = 0 (3.17)

C1,n+1 = C1,n +∆tĊ1,n+θ (3.18)

Ċ1,n+θ = (1− θ)Ċ1,n + θĊ1,n+1 (3.19)

sendo, θ um parâmetro tomado no intervalo [0, 1]. Alguns métodos bem conhecidos da

famı́lia trapezoidal são: Euler expĺıcito (θ = 0), Euler impĺıcito (θ = 1) e o método de

segunda ordem de Crank Nicolson (θ = 0, 5), sendo o último aplicado nos experimentos

apresentados neste trabalho. Os vetores C1,n e Ċ1,n, representam as aproximações para

C1(tn) e Ċ1(tn), respectivamente.

Partindo de (3.18) e (3.19), obtém-se

C1,n+1 = C̃1,n+1 +∆tθĊ1,n+1 (3.20)
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onde,

C̃1,n+1 = C1,n +∆t(1− θ)Ċ1,n (3.21)

e substituindo em (3.20) e (3.17) obtém-se a seguinte representação matricial de um

conjunto de equações algébricas não lineares acopladas entre si

[

M1(C̃1,n+1 +∆tθĊ1,n+1) + ∆tθK1

]

Ċ1,n+1 = −K1C̃1,n+1 (3.22)

Uma equação análoga a essa é utilizada para o aceptor de elétrons. Porém, nesse caso

a matriz M2 não depende da concentração, ou seja, resolve-se um sistema de equações

algébricas linear para Ċ2,n+1, tal que

[M2 +∆tθK2] Ċ2,n+1 = −K2C̃2,n+1 (3.23)

nesse caso, as matrizes M2 e K2 são resultantes da discretização espacial do problema do

aceptor de elétrons, e o preditor é dado por

C̃2,n+1 = C2,n +∆t(1− θ)Ċ2,n (3.24)

A não linearidade do problema do doador de elétrons é tratada utilizado o método de

Newton [43]. Para tal, definimos F(Ċ1,n+1) como o reśıduo da equação (3.22), tal que

F(Ċ1,n+1) =

















f1(Ċ1,n+1)

f2(Ċ1,n+1)
...

fnnm(Ċ1,n+1)

















(3.25)

e

fj(Ċ1,n+1) =
nnm
∑

j=1

{[

mij(C̃1,n+1 + θ∆tĊ1j,n+1)j

]

(Ċ1,n+1)j+

[kij] (C̃1,n+1)j + θ∆t [kij] (Ċ1,n+1)j

}

(3.26)

onde, nnm é o número de nós da malha com concentrações desconhecida.
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Define-se também o método iterativo onde Ċk+1
1,n+1 é a aproximação obtida na iteração

k. Assim, expandindo F(Ċ1,n+1) em série de Taylor e igualando a zero [43], obtemos a

seguinte equação

F(Ċk
1,n+1) + J(Ċk

1,n+1)∆Ċk+1
1,n+1 = 0 (3.27)

onde,

∆Ċk+1
1,n+1 = Ċk+1

1,n+1 − Ċk
1,n+1 (3.28)

e J(Ċk
1,n+1) é a matriz Jacobiana, com componentes dados por

Jij(Ċ
k
1,n+1) =

[

∂fi(Ċ
k
n+1)

∂(Ċk
n+1)j

]

=

[

∂mij(C̃
k
j,n+1 + θ∆tĊk

j,n+1)

∂(Ċk
j,n+1)

]

(Ċk
j,n+1) +

+
[

mij(C̃
k
j,n+1 + θ∆tĊk

j,n+1)
] ∂(Ċk

j,n+1)

∂(Ċk
j,n+1)

+ θ∆t [kij]
∂(Ċk

j,n+1)

∂(Ċk
j,n+1)

(3.29)

Deste modo, rearranjando a equação (3.27),

J(Ċk
1,n+1)∆Ċk+1

1,n+1 = −F(Ċk
1,n+1) (3.30)

e resolvendo esse sistema de equações lineares para ∆Ċk+1
1,n+1, a nova aproximação será

Ċk+1
1,n+1 = Ċk

1,n+1 +∆Ċk+1
1,n+1 (3.31)

O processo iterativo do método de Newton repete-se até que ‖ ∆Ċk+1
1,n+1 ‖≤ tol ou

até que um número máximo de iterações seja alcançado. Quando um desses critérios for

satisfeito obtém-se a seguinte aproximação em tn+1

Ċ1,n+1 = Ċk+1
1,n+1 (3.32)

Nas simulações computacionais mostrados nesse trabalho tol = 1, 0× 10−4.
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3.3 Discretização da segunda etapa da DO: Reações

Conforme discutido na Seção 3.1, a aproximação da solução para C1 e C2 em tn+1,

obtida na primeira etapa da decomposição de operadores, serve apenas como uma solução

intermediária. Assim, deve-se agora encontrar a solução definitiva para tn+1, para tanto,

resolve-se o sistema de EDO’s (3.3)-(3.6) utilizando a aproximação intermediária como

condição inicial.

O método de Runge-Kutta é uma técnica numérica utilizada para resolver o sistema

de EDO’s da segunda etapa da DO [14, 40]. Essa técnica não requer o cálculo de derivadas

de alta ordem, avaliando a função em vários tempos entre tnr
e tnr+1, onde nr indica os

passos de tempo durante o cálculo das reações. O método de Runge-Kutta aqui utilizado

é o clássico método de quarta ordem [43, 44].

Para a aplicação do método de Runge-Kutta ao sistema de equações (3.3)-(3.6),

primeiramente definimos as seguintes funções

∂C1

∂t
= f1(C1, S1, C2, B1) = −

1

φF(C1)

(

(1− φ)
∂S1

∂t
+ φR1(C1, C2, B1)

)

(3.33)

∂S1

∂t
= f2(C1, S1, C2, B1) = K (ρsF (C1)− S1) (3.34)

∂C2

∂t
= f3(C1, S1, C2, B1) = −R2(C1, C2, B1) (3.35)

∂B1

∂t
= f4(C1, S1, C2, B1) = R3(C1, C2, B1) (3.36)

Assim, utilizando como condições iniciais para o sistema de EDO’s as concentrações S1 e

B1 em tn e as concentrações C1 e C2 resultantes do primeiro passo da DO, ou seja

C0
1,nr

= C1,n+1 (3.37)

C0
2,nr

= C2,n+1 (3.38)

S0
1,nr

= S1,n (3.39)

B0
1,nr

= B1,n (3.40)
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Sendo o passo de tempo da segunda etapa da DO, dado por ∆tr = ∆t/Nr, apresenta-se

o método de Runge-Kutta de quarta ordem aplicado ao sistema de equações (3.3)-(3.6)

C1,nr+1 = C1,nr
+

1

6
(m11 + 2 (m12 +m13) +m14) (3.41)

C2,nr+1 = C2,nr
+

1

6
(m21 + 2 (m22 +m23) +m24) (3.42)

S1,nr+1 = S1,nr
+

1

6
(m31 + 2 (m32 +m33) +m34) (3.43)

B1,nr+1 = B1,nr
+

1

6
(m41 + 2 (m42 +m43) +m44) (3.44)

onde, para i = 1, ..., 4

mi1 = ∆trfi(C1,nr
, S1,nr

, C2,nr
, B1,nr

) (3.45)

mi2 = ∆trfi(C1,nr
+

1

2
m11, S1,nr

+
1

2
m21, C2,nr

+
1

2
m31, B1,nr

+
1

2
m41) (3.46)

mi3 = ∆trfi(C1,nr
+

1

2
m12, S1,nr

+
1

2
m22, C2,nr

+
1

2
m32, B1,nr

+
1

2
m42) (3.47)

mi4 = ∆trfi(C1,nr
+m13, S1,nr

+m23, C2,nr
+m33, B1,nr

+m43) (3.48)

Assim, após as Nr iterações de passo ∆tr com o método de Runge-Kutta, obtém-se as

aproximações definitivas para as soluções de C1, S1, C2 e B1 em tn+1. Para obter a

solução no próximo passo de tempo tn+2, repete-se a primeira etapa da DO utilizando as

concentrações C1 e C2 determinadas para tn+1 na segunda etapa de reação da DO. Com

as concentrações de S1 e B1 em tn+1 e a aproximação intermediária de C1 e C2 em tn+2

calculam-se as reações, atualizando os valores das concentrações em tn+2. Repete-se esse

procedimento até que o tempo de interesse seja alcançado.

3.4 Implementação

A implementação foi desenvolvida com base no código de elementos finitos Dlearn [41]

em 2D. Ao código foram inseridas rotinas pelas quais é realizada a montagem das

matrizes para os problemas de transporte advectivo-difusivo linear e não linear. Foi

necessária também a inserção de um estrutura iterativa, responsável pelo avanço no

tempo. Para tratamento da não linearidade do problema do transporte, implementou-

se o método de Newton. Pela metodologia da decomposição de operadores as reações são
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resolvidas separadamente do problema do transporte. Deste modo, para essa etapa, foi

implementada um rotina com o método de Runge-Kutta para a resolução das EDO’s de

reação. Pela adoção do código Dlearn existe a possibilidade do avanço para casos 3D sem

muitas dificuldades. O código esta implementado em Fortran 77.
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4 EXPERIMENTOS

COMPUTACIONAIS

Variações do modelo padrão apresentado no Caṕıtulo 2 são utilizadas para analisar a

influência de diferentes tipos de reações que podem ocorrer simultaneamente durante o

transporte. Para a realização das simulações computacionais, neste caṕıtulo, são propostos

diferentes modelos de transporte e cenários de contaminação em meios porosos saturados.

4.1 Modelos

Cada modelo apresentado aqui contempla uma ou mais reações ocorrendo

simultaneamente, exceto o primeiro, que representa o transporte sem qualquer tipo de

reação. Na Tabela 4.1 pode-se observar quais tipos de fenômenos são levados em conta

em cada um dos sete modelos propostos a partir do modelo apresentado no Caṕıtulo 2.

Tabela 4.1: Modelos propostos para as simulações computacionais.

Modelo
Fenômeno 1 2 3 4 5 6 7

Advecção e dispersão X X X X X X X
Sorção de equiĺıbrio X X X X
Sorção de não equiĺıbrio X X X X
Biodegradação X X X

A seguir são apresentadas as equações que governam o transporte e as reações

envolvidas em cada um dos modelos mostrados na tabela acima. O primeiro Modelo

está sujeito apenas aos mecanismos de advecção e difusão e considera presente apenas

o contaminante na fase fluida (C1). Os Modelos 2, 3 e 4, contemplam o transporte

do contaminante com concentrações em ambas as fases (C1 e S1), pois levam-se em

consideração reações de sorção, sendo que no Modelo 2 apenas a sorção de equiĺıbrio

está presente, no Modelo 3 apenas a sorção de não equiĺıbrio e no Modelo 4 ambas estão

presentes. Nos Modelos 2, 3 e 4 a influência de outras substâncias é desconsiderada. Nos

outros três Modelos, 5, 6 e 7, além do doador de elétrons, presente em ambas as fases

(C1 e S1), as concentrações do aceptor de elétrons (C2) e da biomassa (B1), presentes
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apenas na fase fluida, também são consideradas. No Modelo 5 reações de sorção de

equiĺıbrio e biodegradação estão presentes, já no Modelo 6 ao invés da sorção de equiĺıbrio,

tem-se sorção de não equiĺıbrio. Por fim, o último Modelo contempla todas as reações

aqui apresentadas, sorção de equiĺıbrio e não equiĺıbrio ocorrendo simultaneamente com

a biodegradação, além dos mecanismos de advecção e dispersão que ocorrem em todos os

modelos propostos.

Modelo 1. Transporte sem reações

φ
∂C1

∂t
+ vd · ∇C1 −∇ · (D1∇C1) = 0 (4.1)

Modelo 2. Sorção em modo de equiĺıbrio

φF(C1)
∂C1

∂t
+ vd · ∇C1 −∇ · (D1∇C1) = 0 (4.2)

Modelo 3. Sorção em modo de não equiĺıbrio

φ
∂C1

∂t
+ vd · ∇C1 −∇ · (D1∇C1) + (1− φ)

∂Sne
1

∂t
= 0 (4.3)

∂Sne
1

∂t
= K (ρsF (C1)− Sne

1 ) (4.4)

Modelo 4. Sorção em modo de equiĺıbrio e não equiĺıbrio

φF(C1)
∂C1

∂t
+ vd · ∇C1 −∇ · (D1∇C1) + (1− φ)

∂S1

∂t
= 0 (4.5)

∂Sne
1

∂t
= K (ρsF (C1)− Sne

1 ) (4.6)
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Modelo 5. Sorção em modo de equiĺıbrio e biodegradação

φF(C1)
∂C1

∂t
+ vd · ∇C1 −∇ · (D1∇C1) = −φR1(C1, C2, B1) (4.7)

φ
∂C2

∂t
+ vd · ∇C2 −∇ · (D2∇C2) = −φR2(C1, C2, B1) (4.8)

∂B1

∂t
= R3(C1, C2, B1) (4.9)

Modelo 6. Sorção em modo de não equiĺıbrio e biodegradação

φ
∂C1

∂t
+ vd · ∇C1 −∇ · (D1∇C1) + (1− φ)

∂Sne
1

∂t
= −φR1(C1, C2, B1) (4.10)

∂Sne
1

∂t
= K (ρsF (C1)− Sne

1 ) (4.11)

φ
∂C2

∂t
+ vd · ∇C2 −∇ · (D2∇C2) = −φR2(C1, C2, B1) (4.12)

∂B1

∂t
= R3(C1, C2, B1) (4.13)

Modelo 7. Sorção em modo de equiĺıbrio, não equiĺıbrio e biodegradação

φF(C1)
∂C1

∂t
+ vd · ∇C1 −∇ · (D1∇C1) + (1− φ)

∂Sne
1

∂t
= −φR1(C1, C2, B1) (4.14)

∂Sne
1

∂t
= K (ρsF (C1)− Sne

1 ) (4.15)

φ
∂C2

∂t
+ vd · ∇C2 −∇ · (D2∇C2) = −φR2(C1, C2, B1) (4.16)



59

∂B1

∂t
= R3(C1, C2, B1) (4.17)

As condições iniciais (t = 0) empregadas nesses problemas são:

C1 = C̄10 (4.18)

Sne
1 = ρsF (C̄10) (4.19)

C2 = C̄20 (4.20)

B1 = B̄10 (4.21)

e as condições de contorno

C1 = ḡ1 (4.22)

C2 = ḡ2 (4.23)

D1∇C1 · n = h̄1 (4.24)

D2∇C2 · n = h̄2 (4.25)

Os termos de reação R1(C1, C2, B1), R2(C1, C2, B1) e R3(C1, C2, B1) são obtidos pelo

modelo de Monod multiplicativo, equações (2.80)-(2.82).

4.2 Cenários

O código computacional para resolução dos modelos acima citados está implementado

para resolver problemas em domı́nios bidimensionais (Figura 4.1). Entretanto para a

validação do modelo são utilizadas soluções anaĺıticas [4, 52] e numéricas [24, 26, 39]

unidimensionais. Desta forma, para validar os experimentos computacionais, são

propostos cenários onde o deslocamento das substâncias ocorre apenas na direção x, onde

empregando condições de contorno adequadas, representa-se um fluxo unidimensional

(Figura 4.2).

Com base em dados da literatura [4, 15, 24, 25, 26, 27, 34, 39, 38, 52], são propostos

cinco cenários distintos. Os quatro primeiros são utilizados para validar o código

comparando com soluções unidimensionais já conhecidas. O quinto cenário é utilizado

para simular representações bidimensionais submetidas à diferentes reações. Na Tabela
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Figura 4.1: Ilustração do domı́nio bidimensional com condições de contorno.
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Figura 4.2: Ilustração do domı́nio unidimensional com condições de contorno.

4.2 pode-se observar os parâmetros empregados em cada um dos cinco cenários. Nas

simulações apresentadas no caṕıtulo seguinte, para um mesmo cenário são utilizados

diferentes valores dos parâmetros das cinéticas de sorção (pf1 , kf1 , kd1 e K). Assim

estes valores são mostrados em cada simulação.

Assume-se para todos os cenários que o fluxo de solutos nos contornos inferior e

superior é nulo, conforme Figura 4.1, ou seja

∂C1

∂y
· n = 0 , em y = 0 , ∀ x (4.26)

∂C2

∂y
· n = 0 , em y = Ly , ∀ x (4.27)

Para os experimentos representando fluxo unidimensional são necessárias algumas

adaptação. Nesses casos (cenários 1, 2, 3 e 4), o fluxo de fluido na direção y

necessariamente deve ser nulo em todo o domı́nio. Além disso, ainda são necessárias

condições de contorno adequadas para essa representação. Assim, prescrevem-se condições

de contorno em x = 0 e x = Lx constantes para qualquer y, tal que

C1 = ḡ1 , em x = 0 , ∀ y (4.28)

C2 = ḡ2 , em x = 0 , ∀ y (4.29)

D1
∂C1

∂x
· n = h̄1 , em x = Lx , ∀ y (4.30)

D2
∂C2

∂x
· n = h̄2 , em x = Lx , ∀ y (4.31)
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Tabela 4.2: Parâmetros utilizados nos canários de representação unidimensional e
bidimensional.

Parâmetro Unidade
Representação

1D (Validação) 2D
Cenário 1 Cenário 2 Cenário 3 Cenário 4 Cenário 5

M
al
h
a

Lx m 10,0 10,0 10,0 6,0 10,0
Ly m 1,0 1,0 1,0 1,0 1,0
∆x m 0,1 0,1 0,1 0,06 0,04
∆y m 0,25 0,25 0,25 0,25 0,05
∆t dia 0,1 0,1 0,1 0,01 0,01
nnm − 505 505 505 505 5271

M
ei
o
p
or
os
o φ − 0,1 0,5 0,5 0,5 0,1

ρs g cm−3 2,67 1,0 1,0 1,0 1,0

H
id
ro
d
in
âm

ic
a

vx m dia−1 0,01 0,5 0,5 0,05 0,1
vy m dia−1 0,0 0,0 0,0 0,0 0,0
d1 m2 dia−1 0,0003 0,1 0,1 0,0003 0,001
d2 m2 dia−1 0,0 0,0 0,0 0,0 0,001
βL1

m 0,0 0,0 0,0 0,0 0,005
βL2

m 0,0 0,0 0,0 0,0 0,005
βT1

m 0,0 0,0 0,0 0,0 0,0015
βT2

m 0,0 0,0 0,0 0,0 0,0015

B
io
d
eg
ra
d
aç
ão V 1

m dia−1 0,0 0,0 0,0 0,427 0,427
K1

h(C1) mg l−1 0,0 0,0 0,0 0,218 0,218
K1

h(C2) mg l−1 0,0 0,0 0,0 0,146 0,146
Yc1 − 0,0 0,0 0,0 0,678 0,678
Yc2 − 0,0 0,0 0,0 0,983 0,983
m dia−1 0,0 0,0 0,0 0,07 0,07

Cenário 1. Nesse cenário apenas a concentração do contaminante orgânico é

levada em consideração. Com o meio, inicialmente, livre de qualquer concentração

do contaminante, em x = 0, 0 m é inserida uma fonte constante com concentração

C1 = 100, 0 mg l−1, então escrevem-se as seguintes condições iniciais e de contorno

C̄10 = 0, 0 mg l−1, para 0, 0 m ≤ x ≤ 10, 0 m , ∀ y (4.32)

S̄ne
10

= ρsF (C̄10), para 0, 0 m ≤ x ≤ 10, 0 m , ∀ y (4.33)

ḡ1 = 100, 0 mg l−1, em x = 0, 0 m , ∀ y (4.34)

h̄1 = 0, 0 mg l−1 m−1, em x = 10, 0 m , ∀ y (4.35)

As simulações desse cenário são utilizadas para validação da solução numérica,



62

comparando-se com as soluções anaĺıticas propostas em Serrano, 2001 [52] e Bear, 2010

[4]. Demais parâmetros utilizados nas simulações que levam em conta reações de sorção

são apresentadas no caṕıtulo seguinte, junto aos respectivos resultados.

Cenário 2. Nesse cenário apenas a concentração do contaminante orgânico é levada

em consideração. Diferente do cenário anterior, aqui não considera-se a existência de uma

fonte de contaminante, mas sim que inicialmente, um trecho do domı́nio está contaminado

com um concentração de 1, 0 mg l−1 da substância poluidora. Assim, para o domı́nio

escrevemos as seguintes condições iniciais e de contorno

C̄10 =







1, 0 mg l−1, para 0, 0 m < x ≤ 1, 0 m

0, 0 mg l−1, caso contrário
, ∀ y (4.36)

S̄ne
10

= ρsF (C̄10), para 0, 0 m ≤ x ≤ 10, 0 m , ∀ y (4.37)

ḡ1 = 0, 0 mg l−1, em x = 0, 0 m , ∀ y (4.38)

h̄1 = 0, 0 mg l−1 m−1, em x = 10, 0 m , ∀ y (4.39)

As solução obtidas nas simulações desse cenário são utilizadas para comparação com

resultados numéricos obtidos em outros trabalhos [25, 26, 27, 39, 38].

Cenário 3. Esse cenário representa a mesma situação de contaminação do Cenário

2. Entretanto a concentração inicial, no trecho do domı́nio que está contaminado é de

10, 0 mg l−1. Assim, para o domı́nio escrevemos as seguintes condições iniciais e de

contorno

C̄10 =







10, 0 mg l−1, para 0, 0 m < x ≤ 1, 0 m

0, 0 mg l−1, caso contrário
, ∀ y (4.40)

S̄ne
10

= ρsF (C̄10), para 0, 0 m ≤ x ≤ 10, 0 m , ∀ y (4.41)

ḡ1 = 0, 0 mg l−1, em x = 0, 0 m , ∀ y (4.42)

h̄1 = 0, 0 mg l−1 m−1, em x = 10, 0 m , ∀ y (4.43)

As solução obtidas nas simulações desse cenário são utilizadas para comparação com
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resultados numéricos obtidos em outros trabalhos [25, 26, 27, 39, 38].

Cenário 4. Nesse cenário concentrações do contaminante, do oxigênio e da biomassa

são consideradas. Assume-se que o meio esta completamente contaminado por uma

substância orgânica com concentração na fase fluida de 5, 0 mg l−1. No meio também esta

presente inicialmente uma concentração de biomassa aderida a fase sólida de 0, 427 mg l−1.

Do instante de tempo inicial, até o final da simulação, injeta-se uma concentração de

10, 0 mg l−1 de oxigênio no contorno esquerdo. Assim, para o contaminante são propostas

as seguintes condições iniciais e de contorno

C̄10 = 5, 0 mg l−1, para 0, 0 m ≤ x ≤ 6, 0 m , ∀ y (4.44)

S̄ne
10

= ρsF (C̄10), para 0, 0 m ≤ x ≤ 6, 0 m , ∀ y (4.45)

ḡ1 = 0, 0 mg l−1, em x = 0, 0 m , ∀ y (4.46)

h̄1 = 0, 0 mg l−1 m−1, em x = 6, 0 m , ∀ y (4.47)

para o oxigênio

C̄20 = 0, 0 mg l−1, para 0, 0 m ≤ x ≤ 6, 0 m , ∀ y (4.48)

ḡ2 = 10, 0 mg l−1, em x = 0, 0 m , ∀ y (4.49)

h̄2 = 0, 0 mg l−1 m−1, em x = 6, 0 m , ∀ y (4.50)

e a biomassa com condição inicial

B̄10 = 0, 427 mg l−1, para 0, 0 m ≤ x ≤ 6, 0 m , ∀ y (4.51)

As solução obtidas nas simulações desse cenário são utilizadas para comparação com

resultados numéricos obtidos em outros trabalhos [39, 38].

Cenário 5. Nesse cenário concentrações do contaminante, do oxigênio e da biomassa

são consideradas. Assume-se que o meio esta completamente contaminado por uma

substância orgânica com concentração na fase fluida de 5, 0 mg l−1. No meio também esta

presente inicialmente uma concentração de biomassa aderida a fase sólida de 0, 427 mg l−1.

Do instante de tempo inicial, até o final da simulação, injeta-se uma concentração de

10, 0 mg l−1 de oxigênio em uma parte do contorno esquerdo. Assim, são propostas as
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seguintes condições iniciais e de contorno

C̄10 = 5, 0 mg l−1 (4.52)

S̄ne
10

= ρsF (C̄10) (4.53)

C̄20 = 0, 0 mg l−1 (4.54)

B̄10 = 0, 427 mg l−1 (4.55)

ḡ1 = 0, 0 mg l−1, em x = 0, 0 m , ∀ y (4.56)

h̄1 = 0, 0 mg l−1 m−1, em x = 10, 0 m , ∀ y (4.57)

ḡ2 =







10, 0 mg l−1, para 0, 0 m ≤ y ≤ 0, 25 m e x = 0, 0 m

0, 0 mg l−1, caso contrário
, ∀ y (4.58)

h̄2 = 0, 0 mg l−1 m−1, em x = 10, 0 m , ∀ y (4.59)

Esse cenário é utilizado em representações bidimensionais, onde existe fluxo dispersivo

também na direção y.
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5 RESULTADOS E DISCUSSÕES

Neste caṕıtulo são apresentados e discutidos resultados obtidos pelas simulações

computacionais. Na primeira seção, com a finalidade de verificar o código, os resultados

dos experimentos são comparados com soluções anaĺıticas e numéricas dispońıveis na

literatura. Nessa seção ainda é verificada a influência das interações entre reações de

biodegradação e sorção para alguns casos com representação unidimensional. Na Seção

5.2 investiga-se a interferência dos parâmetros associados às reações de biodegradação e

sorção em domı́nios bidimensionais.

5.1 Experimentos 1D

5.1.1 Efeito da sorção durante o transporte

Considerando o Cenário 1 apresentado no caṕıtulo anterior, são simulados três casos

distintos. No primeiro considera-se o transporte não reativo (Modelo 1), no segundo e

terceiro casos leva-se em conta a sorção em modo de equiĺıbrio (Modelo 2), com diferentes

valores dos expoente pf1 da isoterma. Para o segundo caso adota-se pf1 = 1, 0 e kf1 =

kd1 = 0, 01 cm3 g−1, assim, a isoterma de Freundlich torna-se linear. No terceiro caso,

como assumimos pf1 = 0, 75, a sorção tem um comportamento não linear, e nesse caso

empregou-se para o coeficiente de troca entre as fases kf1 = 0, 01 (µ g g−1)(l mg−1)pf1 .

O tamanho do passos utilizado aqui para resolver as reações é dez vezes menor do que o

tamanho do passo utilizado no transporte, ou seja, Nr = 10.

As soluções obtidas são comparadas às soluções anaĺıticas encontradas em [52]. Na

Figura 5.1 estão representadas as soluções anaĺıticas e numéricas para o transporte com e

sem reação de sorção nos tempos de 10, 30, 50 e 80 dias. Pela figura observa-se um bom

ajuste da solução numérica, obtida a partir do código de elementos finitos, para todos os

tempos mostrados. Esse resultado indica que este método é adequado para simular não

só o transporte puramente advectivo-difusivo mas também os casos em que inclui-se a

sorção de equiĺıbrio com isoterma linear ou não linear.

Constata-se ainda nesta figura que quando o transporte está sujeito à reação de sorção
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Figura 5.1: Soluções anaĺıticas e numéricas para os problemas: não reativo (vermelha),
sob influência da sorção de equiĺıbrio com isoterma não linear (azul), e com isoterma linear
(preto) nos tempos de 10, 30, 50 e 80 dias (da esquerda para a direita).

ocorre um retardo na frente de contaminação. Nota-se, nesse caso, que o retardo é maior

quando a isoterma é linear. Esse atraso no avanço da frente de contaminação pode

ser melhor observado na Figura 5.2 que apresenta a curva caracteŕıstica do transporte

(Breakthrought curve) para os casos reativos e não reativo a 1, 0m, 3, 5m e 6, 0m de

distância da fonte. Pelas curvas, constata-se, que a frente de contaminação modelada

pelo transporte com sorção de equiĺıbrio e isoterma linear despende mais tempo para

alcançar os pontos referidos do que nos outros dois casos. Observa-se também que com o

aumento da distância em relação a fonte, aumenta também a diferença entre os tempos

gastos pelas frentes reativas e não reativa atingirem um mesmo ponto.

5.1.2 Sorção de equiĺıbrio linear versus sorção de equiĺıbrio

não linear

Com o objetivo de analisar o comportamento da sorção em modo de equiĺıbrio com

isoterma linear e não linear, foi utilizado o Modelo 2 aplicado aos Cenários 2 e 3, onde

temos uma concentração inicial de contaminante em um trecho do domı́nio. Na Figura

5.3 pode-se observar a evolução do contaminante aos 2, 6 e 12 dias para isotermas linear

e não linear. Percebe-se nessa figura, que sob influência da isoterma linear a pluma
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de contaminação mantém-se simétrica ao longo do tempo para ambas as concentrações

iniciais, enquanto que para o modelo não linear essa simetria é perdida. O tamanho do

passos utilizado aqui para resolver as reações é dez vezes menor do que o tamanho do

passo utilizado no transporte, ou seja, Nr = 10.

No caso em que C̄10 = 1, 0 mg l−1 em um trecho do domı́nio (Cenário 2), verifica-se

que o maior retardo ocorre no transporte cuja sorção de equiĺıbrio está sujeita à isoterma

não linear. Entretanto, quando é utilizada concentração inicial C̄10 = 10, 0 mg l−1 em

um trecho do domı́nio (Cenário 3) ocorre o contrário, conforme pode ser visualizado na

Figura 5.3. Esse comportamento, pode ser explicado pelas caracteŕısticas da isoterma de

Freundlich (ver Figura 2.3). Quando os valores da concentração na fase fluida são menores

do que 1, 0 mg l−1 a fração retida na fase sólida é maior para o modelo não linear com

pf1 < 1, se comparado ao modelo linear pf1 = 1. Nos casos em que a concentração na

fase fluida for maior do que 1, 0 mg l−1, como no caso em que C̄10 = 10, 0 mg l−1, ocorre

o contrário, o modelo não linear com pf1 < 1 retem uma menor fração de massa do que o

modelo linear [52].
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5.1.3 Sorção em modo de equiĺıbrio versus sorção em modo

de não equiĺıbrio

Conforme discutido anteriormente o fenômeno de sorção pode ser representado também

por um modelo de não equiĺıbrio. Assim, para o domı́nio unidimensional representado

na Figura 4.2, sob as condições do Cenário 1, aplicou-se os Modelos 2 e 3, que levam em

conta a sorção de equiĺıbrio e não equiĺıbrio, respectivamente.

Na Figura 5.4 apresentam-se resultados para o problema do transporte com reação de

sorção em modo de não equiĺıbrio (Modelo 3) com isoterma linear e não linear. Nessa figura

pode-se observar a evolução do contaminante nos tempos de 10, 30, 50 e 80 dias, para o

modelo de sorção de equiĺıbrio e de não equiĺıbrio com K = 0, 5 dia−1, K = 1, 0 dia−1 e

K = 10, 0 dia−1. Constata-se por meio da analise desta que com o aumento do valor de

K o comportamento da frente de contaminação modelado pela sorção de não equiĺıbrio

tende a se igualar ao do transporte sob influência da reação de sorção instantânea. Isso

é, com o aumento da velocidade de reação a resposta do problema se aproxima da obtida

considerando-se a sorção de equiĺıbrio (Modelo 2). Nos casos linear e não linear da sorção

de não equiĺıbrio, pode-se observar também, que com a redução do valor de K a frente de

contaminação tende a ficar mais suave.

Ainda com os Modelos 2 e 3 comparam-se a sorção de equiĺıbrio e não equiĺıbrio para

o Cenário 2. Pela Figura 5.5, conforme já constatado na simulação anterior, nota-se que

o elevado valor de K aproxima a solução do modelo de não equiĺıbrio à solução do modelo

de equiĺıbrio. Fenômeno que é observado para ambos os casos, linear e não linear. Essa

simulação reproduz o comportamento esperado para a sorção no sistema [26, 38].

Nos casos apresentados na Figura 5.4 o tamanho do passos utilizado para resolver as

reações é dez vezes menor do que o tamanho do passo utilizado no transporte, ou seja,

Nr = 10. Entretanto nos casos da Figura 5.5, como K é muito grande, o tamanho do

passos utilizado para resolver as reações é cinquenta vezes menor do que o tamanho do

passo utilizado na etapa do transporte, ou seja, Nr = 50.



70

 0

 20

 40

 60

 80

 100

 120

 0  2  4  6  8  10

C
on

ce
nt

ra
çã

o 
(m

g 
l

−
1 )

Distância (m)

Isoterma linear

kd1
 = 0.01 cm3 g−1

pf1
 = 1.0

    Instantânea
 K =  0.5 dia−1

 K =  1.0 dia−1

 K = 10.0 dia−1

 0

 20

 40

 60

 80

 100

 120

 0  2  4  6  8  10

C
on

ce
nt

ra
çã

o 
(m

g 
l

−
1 )

Distância (m)

Isoterma não linear

kf1
 = 0.01 (µg g−1)(l mg−1)pf1

pf1
 = 0.75

    Instantânea
 K =  0.5 dia−1

 K =  1.0 dia−1

 K = 10.0 dia−1
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5.1.4 Sorção de equiĺıbrio e não equiĺıbrio simultâneas

Em alguns casos, distingue-se durante o transporte, que uma fração da substância

transportada é sorvida instantaneamente e outra parte sorvida lentamente, obedecendo

uma cinética de reação. Essas reações têm ocorrência simultânea, apesar de ocorrerem

com diferentes velocidades. Deste modo, aqui apresentam-se os resultados da simulações

do Modelo 4 que leva em conta a sorção em ambos os modos, equiĺıbrio e não equiĺıbrio

ocorrendo simultaneamente, aplicado aos Cenários 2 e 3. O Modelo 2, que leva em conta

apenas a sorção de equiĺıbrio, aplicado aos mesmos cenários é utilizado para comparar

o comportamento obtido pelo emprego de simultâneas reações de sorção. Nos casos

apresentados aqui o tamanho do passos utilizado para resolver as reações é dez vezes

menor do que o tamanho do passo utilizado no transporte, ou seja, Nr = 10.

Para avaliar os diferentes comportamentos devido a concentração inicial do

contaminante, dois valores iniciais são empregados, C̄10 = 1, 0 mg l−1 (Modelo 2) e C̄10 =

10, 0 mg l−1 (Modelo 3). As isotermas utilizadas para ambos os casos são não lineares,

com pf1 = 0, 75 e coeficiente de troca entre as fases kf1 = 1, 0 (µ g g−1)(l mg−1)pf1 . O

coeficiente cinético do modelo de sorção não linear utilizado aqui é K = 5, 0 dia−1.

Nota-se pela Figuras 5.6, que tanto para o Cenário 2 quanto para o Cenário 3, o

retardo é menor para o modelo que considera apenas a sorção de equiĺıbrio (Modelo 2),

quando comparado com o modelo que contempla os fenômenos de sorção de equiĺıbrio

e não equiĺıbrio atuando simultaneamente (Modelo 4). Isso ocorre, pois os efeitos da

sorção de equiĺıbrio e não equiĺıbrio são somados, aumentando o tempo de retenção do

contaminante no sistema.

Na Figura 5.6 verifica-se para a simulação com concentração inicial da pluma C̄10 =

1, 0 mg l−1 um retardo maior do que no caso em que C̄10 = 10, 0 mg l−1. O mesmo

comportamento foi constatado também na Figura 5.3, onde para as mesmas condições

iniciais simulou-se o comportamento da sorção de equiĺıbrio com isoterma linear e não

linear com pf1 < 1. Conforme mencionado anteriormente, esse comportamento pode ser

explicado pelo emprego da isoterma de Freundlich, equação (2.38).



73

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  2  4  6  8  10

C
on

ce
nt

ra
çã

o 
(m

g 
l

−
1 )

Distância (m)

kf1
 = 1.0 (µg g−1)(l mg−1)pf1

pf1
 = 0.75

 Sorção de equilíbrio
 Sorção de equilíbrio e não equilíbrio K = 5.0 dia−1

 0

 2

 4

 6

 8

 10

 0  2  4  6  8  10

C
on

ce
nt

ra
çã

o 
(m

g 
l

−
1 )

Distância (m)

kf1
 = 1.0 (µg g−1)(l mg−1)pf1

pf1
 = 0.75

 Sorção de equilíbrio
 Sorção de equilíbrio e não equilíbrio K = 5.0 dia−1
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5.1.5 Efeito da sorção na biodegradação

Além do fenômeno de sorção, agora são considerados também os efeitos da biodegradação.

Para isso, além das concentrações do contaminante (C1 e S1), inclui-se no modelo também

as concentrações de biomassa (B1) e do aceptor de elétrons (C2). Para as simulações

unidimensionais envolvendo biodegradação emprega-se o mesmo domı́nio utilizado nos

problemas de sorção discutidos anteriormente (Figura 4.2). O Cenário 4 é utilizado em

todas as simulações do transporte sujeito a biodegradação.

Na Figura 5.7 pode-se visualizar a evolução da concentração do contaminante, do

oxigênio e da biomassa obtida pela simulação do Modelo 5 aplicado ao Cenário 4. Nessa

figura, comparam-se dois casos, um com isoterma linear (pf1 = 1 e kd1 = 2, 0 cm3 g−1)

e o outro com isoterma não linear (pf1 = 0, 75 e kf1 = 2, 0 (µ g g−1)(l mg−1)pf1 ). Na

Figura 5.7 constata-se que o modelo linear causa maior retardo no transporte do doador

de elétrons do que no caso não linear. Pelas curvas de concentração do doador de elétrons

nota-se que com a isoterma linear, houve maior consumo do contaminante. Observação

que também é valida para o oxigênio. Ou seja, o caso de maior retardo proporcionou

também um maior consumo dos insumos (contaminante e oxigênio). Como consequência

no caso linear também houve um maior crescimento da biomassa. Em todos os casos

envolvendo sorção e biodegradação, apresentados nessa subseção, o tamanho do passos

utilizado para resolver as reações é dez vezes menor do que o tamanho do passo utilizado

na etapa do transporte, ou seja, Nr = 10.

Na Figura 5.7 verifica-se ainda que o maior crescimento da biomassa ocorre nos

peŕıodos iniciais e para o modelo linear. Com o súbito crescimento inicial da biomassa,

a concentração de oxigênio em mistura com o contaminante é reduzida bruscamente.

A rápida redução do oxigênio, é percept́ıvel no tempo de 15 dias. Essa diminuição na

concentração do aceptor de elétrons é seguida da redução ou mortandade da biomassa,

devido a escassez do mesmo. Esses resultados estão de acordo com os apresentados por

Couto & Malta, 2008 [39] e Odencrantz, 1991 [14].



75

 0

 1

 2

 3

 4

 5

 6

 0  1  2  3  4  5  6

C
on

ce
nt

ra
çã

o 
(m

g 
l

−
1 )

Distância (m)

Doador de elétrons

Sorção de equilíbrio, kd1
 = 2,0 cm3 g−1, pf1

 = 1,00

Sorção de equilíbrio, kf1 = 2,0 (µ g g−1)(l mg−1)pf1, pf1
 = 0,75

 0

 2

 4

 6

 8

 10

 12

 0  1  2  3  4  5  6

C
on

ce
nt

ra
çã

o 
(m

g 
l

−
1 )

Distância (m)

Aceptor de elétrons

Sorção de equilíbrio, kd1
 = 2,0 cm3 g−1, pf1

 = 1,00

Sorção de equilíbrio, kf1 = 2,0 (µ g g−1)(l mg−1)pf1, pf1
 = 0,75

 0

 1

 2

 3

 4

 5

 6

 7

 0  1  2  3  4  5  6

C
on

ce
nt

ra
çã

o 
(m

g 
l

−
1 )

Distância (m)

Biomassa

Sorção de equilíbrio, kd1
 = 2,0 cm3 g−1, pf1

 = 1,00

Sorção de equilíbrio, kf1 = 2,0 (µ g g−1)(l mg−1)pf1, pf1
 = 0,75

Figura 5.7: Perfis de concentração obtidos pela simulação do Modelo 5 com isoterma
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Adotando agora o Modelo 6 na simulação do Cenário 4, realizam-se quatro simulações

distintas, conforme a Tabela 5.1. Com o uso desses parâmetros pode-se comparar o

comportamento biodegradação com efeito da sorção em modo de não equiĺıbrio linear e

não linear.

Tabela 5.1: Parâmetros para simulação do Modelo 6 para o Cenário 4.

pf1 kd1(cm
3 g−1)/ K

Simulação - kf1(µ g g−1)(l mg−1)pf1 (dia−1)

1 1,0 2,0 0,1
2 1,0 2,0 10,0
3 0,75 2,0 0,1
4 0,75 2,0 10,0

Nas Figuras 5.8 e 5.9 pode-se observar os perfis de concentração das três espécies

contempladas no modelo. Na Figura 5.8 são apresentados os resultados da simulação do

Modelo 6 comK = 0, 1 dia−1 eK = 10, 0 dia−1. Quando comparados esses dois casos com

velocidades cinéticas distintas, nota-se que a simulação com maior velocidade é também

a que apresenta uma maior atividade biológica. Pois conforme já constatado no caso do

Modelo 5, com o aumento do retardo, aumenta-se também a área de mistura entre os

substratos (área com presença de oxigênio e de contaminante). Observando os resultados

das simulações mostradas na Tabela 5.1 (Figuras 5.8 e 5.9), constata-se novamente que

o caso linear tem efeito mais retardante do que o não linear aumentando a região de

mistura e, consequentemente, induzindo a aceleração de biodegradação. Outra diferença

observada nessas figuras é que a concentração de oxigênio no tempo de 15 dias sofre uma

redução maior no modelo linear com K = 10, 0 dia−1. Isso ocorre pois as atividades

biológicas nesse caso são maiores do que no caso não linear para o mesmo coeficiente

cinético.

Observa-se que o rápido crescimento inicial da biomassa, é seguido de um decaimento.

Neste instante, quando a concentração de biomassa está se reduzindo, o oxigênio avança

e aumenta a área de mistura, o que leva a um segundo estágio de crescimento biológico.

Contudo esse crescimento não é superior ao induzido inicialmente.
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a direita).
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Comparam-se agora os Modelos 5 e 6, ambos aplicados ao Cenário 4, com isoterma

não linear onde, pf1 = 0, 75 e kf1 = 2, 0 (µ g g−1)(l mg−1)pf1 . Com altos valores de K

o comportamento do Modelo 6, sujeito à sorção em modo de não equiĺıbrio, aproxima-

se daquele modelado pela sorção em modo de equiĺıbrio, independente da isoterma ser

linear ou não linear. Assim empregando K = 10, 0 dia−1 no modelo de não equiĺıbrio

e comparando com o modelo de equiĺıbrio, obtém-se os resultados mostrados na Figura

5.10.

Tendo em vista que as soluções obtidas pelo modelo de não equiĺıbrio devem aproximar-

se das obtidas por meio do modelo de equiĺıbrio, verifica-se para as três espécies

(contaminante, oxigênio e a biomassa) uma boa concordância dos resultados (Figura

5.10). Como o caso simulado aqui é não linear, percebe-se que as atividades biológicas

são menores dos que nos casos lineares simulados anteriormente. Consequentemente, a

degradação do contaminante e o consumo do oxigênio também são menores.

Em casos onde pode-se distinguir duas forma sorção ocorrendo simultaneamente com a

biodegradação, podemos utilizar o Modelo 7. Conforme discutido anteriormente, os efeitos

de ambos os fenômenos de sorção somam-se, conferindo à solução um maior retardo. De

fato, existe uma relação direta entre o retardo e a biodegradação, pois quanto maior o

retardo, maior a área de mistura entre o doador e o aceptor de elétrons. Empregando

então o Modelo 7 ao Cenário 4 pode-se analisar o efeito da ocorrência simultânea de ambas

as formas de sorção sobre a biodegradação.

Na Figura 5.11 são apresentados os resultados das simulações do Modelo 7 para uma

isoterma linear (pf1 = 1, 0 e kd1 = 2, 0 cm3 g−1) e uma não linear (pf1 = 0, 75 e kf1 =

2, 0 (µ g g−1)(l mg−1)pf1 ). Na figura vê-se, claramente, que mesmo para um coeficiente

cinético pequeno (K = 0, 5 dia−1) a soma dos efeitos de ambos os modelos de sorção

intensificam os fenômeno de mistura.

No Modelo 7 para o caso não linear o crescimento da biomassa é maior do que o

observado nos Modelos 5 e 6. Os efeitos sobre o oxigênio e o doador de elétrons também

são acentuados. Destaca-se que no caso linear, o retardo no transporte do contaminante

é ainda maior, ou seja, para uma isoterma linear, a área de mistura onde ocorre o

crescimento microbiológico é expandida.
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5.2 Experimentos 2D

Aqui dois casos bidimensionais são analisados, ambos simulam a evolução dos substratos

e da biomassa para o Cenário 5. O comportamento das espécies presentes no meio é

analisado com o emprego dos Modelos 6 e 7. Os coeficientes da isoterma de sorção

utilizados na simulação são os mesmos para os dois modelos, contudo no Modelo 6 a sorção

de equiĺıbrio não está presente. Os coeficientes da isoterma de Freundlich empregados aqui

são pf1 = 0, 75 e kf1 = 2, 0 (µ g g−1)(l mg−1)pf1 , desta forma assume-se que a sorção possui

um comportamento não linear. Nas Figuras 5.12 e 5.13 pode-se observar a concentração

das espécies consideradas no Modelos 6 e 7 aos 20 dias, respectivamente. Para o tempo de

60 dias as concentrações são mostradas nas Figuras 5.14 e 5.15. Conforme constatado nos

experimentos unidimensionais o Modelo 7 retarda mais o transporte quando comparado ao

Modelo 6, pois leva em conta a soma dos efeitos da sorção de equiĺıbrio e não equiĺıbrio.

Em todos os casos bidimensionais, apresentados nessa subseção, o tamanho do passos

utilizado para resolver as reações é dez vezes menor do que o tamanho do passo utilizado

no transporte, ou seja, Nr = 10.

Comparando o crescimento da biomassa para o tempo de 20 dias nota-se que o Modelo

7 apresenta uma maior atividade biológica do que no caso em que a sorção ocorre apenas

em modo de equiĺıbrio (Modelo 6). Observando o mapa da concentração de oxigênio e do

contaminante para os tempos de 20 e 60 dias, verifica-se que devido ao maior afastamento

entre as plumas dessas duas substâncias, para o Modelo 6, a área de mistura dos substratos

é menor e, consequentemente, o crescimento microbiológico também diminui.
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Figura 5.12: Mapas de concentração para: biomassa, contaminante e oxigênio simulados
a partir do Modelo 6 com K = 0, 5 dia−1 e isoterma não linear para o Cenário 5 aos 20
dias.
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Figura 5.13: Mapas de concentração para: biomassa, contaminante e oxigênio simulados
a partir do Modelo 7 com K = 0, 5 dia−1 e isoterma não linear para o Cenário 5 aos 20
dias.
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Figura 5.14: Mapas de concentração para: biomassa, contaminante e oxigênio simulados
a partir do Modelo 6 com K = 0, 5 dia−1 e isoterma não linear para o Cenário 5 aos 60
dias.
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Figura 5.15: Mapas de concentração para: biomassa, contaminante e oxigênio simulados
a partir do Modelo 7 com K = 0, 5 dia−1 e isoterma não linear para o Cenário 5 aos 60
dias.
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Partindo do mesmo cenário e modelos utilizados na simulação anterior, substitúı-se o

expoente da isoterma de Freundlich, de tal forma que temos um modelo de sorção linear

com pf1 = 1, 0 e kd1 = 2, 0 cm3 g−1. O mapa de concentração das espécies presentes no

meio para os Modelos 6 e 7, no tempo de 20 dias, são apresentados nas Figuras 5.16 e

5.17, respectivamente. Da mesma forma que ocorreu para os casos com isoterma linear

em um dimensão, o crescimento microbiológico é maior quando comparado aos casos em

que a isoterma utilizada é não linear.

Analisando os resultados obtidos nos experimentos bidimensionais, pode-se observar

que o retardo é maior nos caos lineares quando comparados aos casos não lineares com

pf1 < 1. Consequentemente as atividades biológicas também são maiores nesses casos.

Comparando as Figuras 5.15 e 5.19, por exemplo, podemos observar para um tempo de

60 dias, que as concentrações de biomassa são maiores para o caso em que a isoterma tem

comportamento linear.

A maquina utilizada nas simulações foi um Intel i7 2, 93 GHz com 4 GB de

memória. Nos experimentos computacionais bidimensionais apresentados acima o tempo

computacional médio gasto foi de 2 horas, já nos experimentos unidimensionais o tempo

foi de 2 minutos em média. Como ambos os experimentos são simulados em domı́nios

bidimensionais essa grande diferença é atribúıda exclusivamente ao aumento no número

de nós dos problemas com representação bidimensional em relação aos com representação

unidimensional.
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Figura 5.16: Mapas de concentração para: biomassa, contaminante e oxigênio simulados
a partir do Modelo 6 com K = 0, 5 dia−1 e isoterma linear para o Cenário 5 aos 20 dias.
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Figura 5.17: Mapas de concentração para: biomassa, contaminante e oxigênio simulados
a partir do Modelo 7 com K = 0, 5 dia−1 e isoterma linear para o Cenário 5 aos 20 dias.
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Figura 5.18: Mapas de concentração para: biomassa, contaminante e oxigênio simulados
a partir do Modelo 6 com K = 0, 5 dia−1 e isoterma linear para o Cenário 5 aos 60 dias.
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Figura 5.19: Mapas de concentração para: biomassa, contaminante e oxigênio simulados
a partir do Modelo 7 com K = 0, 5 dia−1 e isoterma linear para o Cenário 5 aos 60 dias.



88

6 CONCLUSÕES

A principal finalidade deste trabalho foi contribuir no desenvolvimento de modelos

matemáticos e ferramentas numéricas para simulação computacional visando um estudo

sobre os mecanismos envolvidos no transporte de contaminantes em meios porosos

saturados. Além dos efeitos da advecção e da dispersão hidrodinâmica, discutiu-se

também as interações reativas de biodegradação e sorção. Considerou-se que a sorção

ocorre de duas formas, em modo de equiĺıbrio e não equiĺıbrio, ambas descritas pela

isoterma de Freundlich. A representação não linear da biodegradação foi obtida pelo

modelo cinético de Monod multiplicativo.

A decomposição de operadores foi adequada para a resolução de problemas envolvendo

o transporte de múltiplas substâncias em meios porosos saturados. Pois as aproximações

obtidas por esse método em problemas com fluxo unidimensional, ajustam-se às soluções

anaĺıticas e numéricas já conhecidas.

A simulação computacional facilitou a compreensão do transporte de múltiplas espécies

em meios porosos saturados. Concluiu-se que a sorção aumenta a região de mistura

dos substratos, intensificando as atividades biológicas e consequentemente à oxidação do

contaminante. Tanto nos experimentos unidimensionais quanto nos bidimensionais foi

observado o mesmo comportamento em relação à influência da sorção sobre o crescimento

microbiológico.

Aspectos não abordados que merecem consideração para futuras atividades:

i. Propor uma metodologias para resolução das EDO’s de reação, que evite a correção

via método de Runge-Kutta de 4a ordem em pontos onde a concentração não se

altera.

ii. Experimentar métodos alternativos, computacionalmente mais baratos, para a

resolução das EDO’s de reação.

iii. Implementação em paralelo, ainda que não tenha havido grande demanda de

tempo de computação nos exemplos analisados. Esta exigência pode se tornar

imprescind́ıvel em casos mais reaĺısticos, como o tridimensional, por exemplo.
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iv. Complementação dos estudos aqui realizados com um módulo de determinação do

campo de velocidades.
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