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RESUMO

O objetivo deste trabalho é estudar, dentro do campo de equações diferenciais
parciais, problemas elípticos onde podemos identificar algum tipo de criticalidade no
comportamento da função não linear presente e, ao final de cada um dos três problemas
principais apresentados aqui, buscar a existência de soluções estritamente positivas para
os mesmos.

No primeiro capítulo, apresentaremos a leitor uma breve história dos problemas
que buscamos estudar e as noções de crescimento crítico de Sobolev e de Trudinger-Moser,
noções que se diferenciam principalmente pelo operador elíptico considerado, pelos espaços
de funções em que procuramos soluções e, adicionalmente, pelos métodos que empregamos.
São estas características que moldam as principais complicações que tivemos de enfrentar
para a resolução dos problemas postos.

No segundo capítulo, olhamos para o primeiro problema de nosso interesse, a saber
o problema de condição de fronteira mista,

−∆u = λuq−1 + f(u) in Ω,
u > 0 in Ω,
B(u) = 0 on ∂Ω,

(1)

onde B(u) é um operador de fronteira mista de Dirichlet-Newmann, combinando duas
diferentes noções de condição de fronteira. Neste caso, a criticalidade da função f é dada
pelo expoente crítico de Sobolev, 2∗ = 2N

N−2 , onde N é a dimensão do espaço em que Ω se
encontra.

Em seguida, no terceiro capítulo, olhamos para um sistema elíptico acoplado,
−∆u− ϕu2∗−2 = λ

uγ in Ω,
−∆ϕ = f(u) in Ω,
u > 0 in Ω,
u = ϕ = 0 on ∂Ω

(2)

e o fato de ainda considerarmos o operador Laplaciano implica novamente em uma condição
de crescimento crítico de Sobolev, de modo que tomamos f abaixo de uma múltipla da
curva dada por u2∗ . Vemos que este crescimento também está presente na primeira equação,
além da consideração de uma singularidade como parte da não-linearidade.

Por fim, no quarto e último capítulo, consideramos enfim um problema com o
operador elíptico não linear, N-Laplaciano,

−∆Nu− ϕf(u)
u

= λ
uγ in Ω,

−∆Nϕ = f(u) in Ω,
u > 0 in Ω,
u = ϕ = 0 on ∂Ω.

(3)



Novamente tratamos um sistema, sendo este bem similar ao primeiro. O operador, porém,
nos força a considerar a condição de criticalidade de Trudinger-Moser, sendo que agora
incorporamos também a função f à primeira equação.

Mais detalhes sobre os problemas tratados, os operadores e suas noções de criticali-
dade serão fornecidos no devido tempo, assim como os métodos de resolução dos mesmos.
Utilizaremos aqui os métodos não-variacionais de Galerkin e da Teoria de Ponto Fixo de
Schauder.

Palavras-chave: Equações Elípticas. Crescimento Crítico. Expoente crítico de
Sobolev. Desigualdade de Trudinger-Moser. Sistema Schrodinger-Poisson. Método de
Galerkin. Teoria do Ponto Fixo de Schauder.



ABSTRACT

The main objective of the present work is to study, within the field of partial
differential equations, elliptic problems where we can identify some form of criticality
in the behavior of the nonlinear function present and, at the end of each of the three
appointed problems, to prove the existence of strictly positive solutions to such.

In the first chapter, we present to the reader a brief historical vision of the problems
we seek to study and the notions of critical growth in the sense of Sobolev and in the
sense of Trudinger-Moser, which differ from one another mainly by the considered elliptic
operator, by the function spaces in which we look for solutions and, additionally, by the
methods we employ. This are the factors that summon the main complications we have
encountered while resolving the proposed problems.

In the second chapter, we look at our first problem considered, namely the mixed
boundary condition problem,

−∆u = λuq−1 + f(u) in Ω,
u > 0 in Ω,
B(u) = 0 on ∂Ω,

(4)

where B(u) is a Dirichlet-Neumann mixed boundary operator, which combines the two
different notions of boundary condition. In this case, the critical behavior of the function
f is given by the Sobolev critical exponent, 2∗ = 2N

N−2 , where N is the dimension of the
space where Ω resides.

Following that, in our tird chapter, we look at an elliptic system highly coupled,
−∆u− ϕu2∗−2 = λ

uγ in Ω,
−∆ϕ = f(u) in Ω,
u > 0 in Ω,
u = ϕ = 0 on ∂Ω

(5)

and the fact that we still treat the Laplacian operator implies once more that the critical
growth condition is given by the Sobolev critical exponent, so that we take f below
(but still able to achieve the growth of) the curve u2∗ . One may notice that this growth
condition is also seen in the first equation, joined with the presence of a singular term as
part of the nonlinearity.

At last, in the fourth and final chapter, it is considered a problem with the nonlinear
elliptic operator, the N-Laplacian,

−∆Nu− ϕf(u)
u

= λ
uγ in Ω,

−∆Nϕ = f(u) in Ω,
u > 0 in Ω,
u = ϕ = 0 on ∂Ω.

(6)



We see that once more we treat a system, quite similar even to the first. The operator,
however, forces us to consider the condition of criticality of Trudinger-Moser, whereas we
also incorporate the same function f to the first equation.

Additional details about the treated problems, their operators and the two notions
of critical growth will be given in time, as will be done for the methods used to solve
them. We will make use, here, of the Galerkin Method and the Schayder Fixed Point
Theorem, both comprising a non variational approach to the resolution of elliptic problems.
Furthermore, the important results of each chapter

Keywords: Elliptic Problems. Critical Growth. Sobolev Critical Exponent.
Trudinger-Moser Inequality. Schrodinger-Poisson System. Galerkin Method. Schauder
Fixed Point Theorem.
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1 INTRODUCTION

1.1 MAIN GOALS

In this work, we seek to obtain existence and positiveness results for three different
classes of elliptic problems, each one of them containing certain elements which hinder the
use of the more common methods, such as variational ones. Our main goal is to show how
we can expand on the results of the current literature with regard to elliptic problems by
considering free nonlinearities obeying critical or supercritical growth, both in the sense of
Sobolev and of Trudinger-Moser, which shall be defined later. By free nonlinearity, we
mean restricting our functions only in their growth, keeping their behaviour quite general.
In this context, we have then chosen to apply the non variational Galerkin Method, also
to be introduced ahead, to the resolution of such elliptic problems. The choice of our main
problems were due to the difficulties the literature encountered when treating them, aside
from their external motivation, more apparent in the last two cases, which we shall pass
through briefly.

1.2 PRELIMINARY SPACES AND DEFINITIONS

Let us pass briefly through some definitions which shall be of great importance
throughout this entire work.

• Ω will, unless explicitly stated otherwise, denote a subset of RN , which will have its
dimension specified when necessary, being a smooth bounded and open set, that is,
a smooth domain.

• Ck(A), for k = 1, 2, 3, · · · and a subset A ⊂ RN , is the space of functions u : A→ R

for which its derivatives up to order k exist and are continuous.

• C∞(A) is the space of functions u : A→ R for which its derivatives up to any order
exist and are continuous. Functions in C∞(A) are also called smooth functions.

• C∞
0 (A) is the subspace of C∞(A) given by smooth functions which vanish outside

a compact set contained in A. The closure of the set of points in RN for which
u ∈ C∞

0 (A) does not vanish is called the support of u, denoted by supp u.

• Lp(Ω), for p ∈ [1,+∞), denotes the space of measurable functions for which the p-th
power of its module is integrable,

Lp(Ω) :=
{
u : Ω→ R ;u is measurable and |u|p =

(∫
Ω
|u|p dx

)1/p

< +∞
}

We have purposely written the integral above as |u|p because it defines a norm in
Lp(Ω). For the case when p = +∞, we define Lp(Ω) = L∞(Ω) as the space of
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measurable functions for which the quantity

ess sup
x∈Ω
|u(x)| = inf{C > 0 ; |u(x)| ≤ C a. e. in Ω}

is finite. In other words, it is the space of measurable functions which are bounded
almost everywhere.

• Given a function u ∈ Lp(Ω), if there exists a function g ∈ Lp′(Ω) such that, for all
φ ∈ C∞

0 (Ω), we have ∫
Ω
u
∂φ

∂xi

dx =
∫

Ω
gφ dx,

then we say that g is the weak derivative of u in relation to xi. We write g = ∂u
∂xi

,
since if g is the derivative of u in the classical sense, it will also be a weak derivative.
In the same way, we can generalize this definition for higher order weak derivatives
denoting, for some multi-index α = (α1, · · · , αn) ∈ Nn

0 , Dαu its weak derivative of
order α.1

• W k,p(Ω), for p ∈ [1,+∞) and k ∈ N, is the space of p-integrable functions such that
its weak derivatives of k-th power are also p-integrable.

W k,p(Ω) := {u ∈ Lp(Ω) ;Dαu ∈ Lp(Ω) for |α| ≤ k} .

We endow it with the norm

∥u∥W k,p(Ω) =

∑
|α|≤k

|Dαu|pp

1/p

.

• W k,p
0 (Ω), for p ∈ [1,+∞) and k ∈ N is the closure of C∞

0 (Ω) relative to the W k,p(Ω)
norm.

• Hk(Ω), for k ∈ N, will be the label we give to the crucial space W k,2(Ω). Furthermore,
we write Hk

0 (Ω) for W k,2
0 (Ω), so that, for the most often needed Sobolev space,

W 1,2
0 (Ω), we use H1

0 (Ω).

1.3 CRITICAL EXPONENTS IN ELLIPTIC EQUATIONS

In this first section, we will study the aspects of an elliptical problem which makes
it critical in its conditions, so that we can, in the following chapters, study some important
cases. Firstly, we shall work with the linear operator −∆, for which the critical growth is
determined by the limit in the exponent of the Sobolev Embedding Theorems (consult the
1 More specifically, Dα should be understood to be a partial derivative in the distributional

sense, requiring thus the study of distribution theory. We shall not deepen in this study, since
this higher formalism is not required, but one can check [1] for more details.
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Appendix for more details). After that, we will analyze the boundary problem with the
p-Laplacian operator, in which case the criticality is given by the so called Trudinger-Moser
inequality. Both this concepts will be made clear in a moment.

Let us consider first the following elliptic problem{
−∆u = f(u), x ∈ Ω,

u = 0, x ∈ ∂Ω.
(1.1)

Problem (1.1), characterized by the second order linear operator

−∆u = div(∇u) =
N∑

i=1

∂2u

∂x2
i

and coupled with the Dirichlet boundary condition, requires the use of the Sobolev Space
H1

0 (Ω).

Remark 1.3.1. The most common and accepted approach to problems of this sort is to
divide it in two step: obtaining what is called a weak solution and proving its regularity.
What we mean by a weak solution (the interested and unfamiliar reader can be referred to
[2, 3] for a deeper look in the matter) is a function u ∈ H1

0 (Ω) such that∫
Ω
∇u∇v dx =

∫
Ω
f(u)v dx , ∀ v ∈ H1

0 (Ω).

Because of our constant use of the term, we shall refer to such a function u as a
solution to Problem (1.1), calling it a classical solution if we are able to prove u ∈ C2(Ω).

We will now analyze the conditions on f that guarantee the existence of solution
to Problem (1.1). Under more strict hypothesis, those which we shall wish to generalize
in the following chapters, this problem can be treated by variational methods. Firstly,
suppose we ask that f satisfies

(h1) The function f : R −→ R is continuous and bounded.

Given this, the functional associated with Problem (1.1) is

I(u) = 1
2

∫
Ω
|∇u|2 dx−

∫
Ω
F (u) dx = 1

2 ∥u∥
2 −

∫
Ω
F (u) dx , u ∈ H1

0 (Ω), (1.2)

where F (s) =
∫ s

0 f(s)ds is the primitive of f , which we know to be a continuous function.

As it can be easily seen, I defined in this way is found to be coercive and bounded
below. This can be proven by use of the best Sobolev constant, which permits us estimate
the norm of a function u in Lq(Ω) by its norm in H1

0 (Ω). With it, and noting that, by
(h1), we have

|F (s)| ≤ a |s| , ∀s ∈ R,
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we can write, for every u ∈ H1
0 (Ω),

I(u) ≥ 1
2 ∥u∥

2 − C ∥u∥ . (1.3)

With this, we prove the existence of the value m = inf{I(u) ;u ∈ H1
0 (Ω)} and,

therefore, a minimizing sequence {un}n∈N in H1
0 (Ω). We only need to prove then the

existence of a limit u ∈ H1
0 (Ω) for un.

Theorem 1.3.1. If f is a function satisfying (h1), then there exists a solution to Problem
(1.1).

Proof. If {un}n∈N is a minimizing sequence for I, we readily see that it must be bounded
in H1

0 (Ω), since I(un) is bounded. By the Sobolev Embedding Theorems, there exists a
function u∗ ∈ H1

0 (Ω) and a subsequence of (un) (we shall, with an abuse of notation, still
denote this subsequence by un) such that

un ⇀ u∗ in H1
0 (Ω),

un → u∗ in Lq(Ω), for q ∈ [1, 2∗)
un → u∗ a.e. in Ω.

(1.4)

Now, by the continuity of F , the third conclusion in (1.4) implies F (un) →
F (u∗) a.e. in Ω. Moreover, the second convergence implies also that (un) is bounded in
Lq(Ω) for q ∈ [1, 2∗) and, since |F (un)| ≤ a |un|, the Dominated Convergence Theorem
(DCT) can be applied to give us∫

Ω
F (un) dx −→

∫
Ω
F (u) dx.

At last, by the weak lower semi-continuity of the norm,

∥u∥2 ≤ lim inf
n→∞

∥un∥2 .

Thus, we have

I(u) = 1
2

∫
Ω
|∇u|2 dx−

∫
Ω
F (u) dx

≤ 1
2 lim inf

n→∞

∫
Ω
|∇un|2 dx− lim

n→∞

∫
Ω
F (un) dx

= lim inf
n→∞

(
1
2

∫
Ω
|∇un|2 dx−

∫
Ω
F (un) dx

)
= lim inf

n→∞
I(un) = m.

(1.5)

With this, we see it can only be I(u) = m = infv∈H1
0 (Ω) I(v). We have obtained,

thus, that u is a global minimum for I, that is, a critical point for this functional.
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Remark 1.3.2. One thing we may want to guarantee is that our attained solution is
different from the trivial solution, that is, the constant function u ≡ 0. In the terms
of Theorem 1.3.1, this cannot be proven, meaning we need additional conditions over
f . If, for example, f behaves as expressed in (h1) only for big enough arguments and is
continuous close to the origin, but such that f(0) ̸= 0, then we obviously obtain that the
trivial function is not a solution to Problem (1.1). Additionally, we may ask (see [4]) that
f also satisfies the following condition

(h′
1) lim inft→0+

f(t)
t
> λ1,

where λ1 is the first eigenvalue to the −∆ operator.

Now, if we examine carefully our proof, we see that two factors in the assumptions
were crucial: first, we needed I to be a coercive and bounded from below, which was given
here by the assumption that f is a bounded function; second, the fact that we were able
to bound the function |F (un)| by a multiple of |un| gave us the possibility of using the
DCT to conclude the continuity of the second term of I (and thus the semi-continuity of
I itself). What we can see now is that if the

∫
Ω F (u) dx were to be bounded by any term

with a growth below the quadratic growth in the norm ∥u∥, then I would still be coercive.
Meanwhile, considering f to be below the so called critical growth, that is,

|f(s)| ≤ a+ b |s|p , ∀ s ∈ R,

p ∈ [0, 2∗ − 1), we shall have

|F (s)| ≤ a1 + b1 |s|p+1 , ∀ s ∈ R,

and the Sobolev Embedding will again provide |F (un)| uniformly bounded by a function
w ∈ L1(Ω). The use of the DCT would then still be possible and I would remain weakly
lower semi-continuous.

Therefore, we can only, for the time being, assume

(h2) The function f : R −→ R is continuous and satisfies:

There exists a, b > 0 such that |f(s)| ≤ a+ b |s|p , ∀ s ∈ R,

where p ∈ (0, 1).

With this, the two main factors in Theorem 1.3.1 are preserved and it can thus be
proved, in the same spirit, the following.

Theorem 1.3.2. If f is a function satisfying (h2), then there exists a solution to Problem
(1.1).
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Remark 1.3.3. If b is small enough, we are able to allow f to achieve linear growth, that
is, to take p = 1 in (h2), and still obtain the term 1

2 ∥u∥
2 dominating at infinity. More

specifically, we must require b < λ1, where λ1 > 0 is the first eigenvalue for the Laplacian
operator. See, for example, [4, Theorem 2.1.6].

Remark 1.3.4. Note that the coercive property is a characterization of the behavior of I
at infinity, implying that the growth condition for the function f near the origin does not
matter so much. We can, therefore, assume weaker conditions, such as

(h′
1) The function f : R −→ R is continuous and satisfies:

lim sup
s→±∞

|f(s)|
|s|

< +∞.

When f is above the linear growth, called superlinear case, we do not have a lower
bound any more and this, obviously, hinders the use of minimization methods. Variations
must be added then to suit each case. In each of then, it is still important how the growth
condition of f is related to the critical Sobolev exponent 2∗ = 2N

N−2 , since it is always used
throughout our proofs the Sobolev Embedding Theorems. As a first example, we note
that, if the term

∫
Ω F (u) dx in (1.2) were negative, we do not need to bound it by a power

of the norm ∥u∥ for I to be coercive. A possible condition is this

(h3) The function f : R −→ R is continuous and satisfies:

There exists a, b > 0 such that |f(s)| ≤ a+ b |s|2
∗−1 , ∀ s ∈ R.

Moreover,
f(s)s ≤ 0 , ∀ s ∈ R.

With this, it can be proven that F satisfies

|F (s)| ≤ a1 + b1 |s|2
∗
, ∀ s ∈ R,

and also F (s) ≤ 0, ∀ s ∈ R.

Thus, we can again adapt the proof of Theorem 1.3.1 and obtain

Theorem 1.3.3. If f is a function satisfying (h3), then there exists a solution to Problem
(1.1).

Proof. See [4, Theorem 2.1.11].

The second example is perhaps the most simple one in characterization, but is one
which does possesses serious problems, where f is the power function f(s) = |s|p−2 s, with
p ∈ (2, 2∗). The problem is then{

−∆u = |u|p−2 u, x ∈ Ω,
u = 0, x ∈ ∂Ω.

(1.6)
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For this problem, the functional needed is

I(u) = 1
2

∫
Ω
|∇u|2 dx− 1

p

∫
Ω
|u|p dx = 1

2 ∥u∥
2 − 1

p
|u|pp (1.7)

and we can see directly how the coercitivity is lost for I if we write I(tu),

lim
t→∞

I(tu) = lim
t→∞

(
t2

2 ∥u∥
2 − tp

p
|u|pp
)

= −∞,

since p > 2.

What can be done to overcome this problem is to constrain the functional I to
a subset of H1

0 (Ω) which recovers this property. Going through the literature (see for
example, [4, 5, 6], and references therein), we find that possible such subsets are:

1. The sphere of Lp(Ω) in H1
0 (Ω),

Σβ = {u ∈ H1
0 (Ω) ; |u|pp = β}.

With this, the functional I restricted to Σβ becomes

I(u) = 1
2 ∥u∥

2 − 1
p
β,

which is obviously coercive and bounded below.

If we apply our proof for the attainment of a solution, however, we shall find a
function that satisfies the equation for a weak solution for (1.6),∫

Ω
∇u∇v dx =

∫
Ω
|u|p v dx,

only for test functions v ∈ TuΣβ, the tangent space of Σ at u. What is left for us to
do is to prove that such u will satisfy this same equation for any v ∈ H1

0 (Ω).

2. The Nehari Manifold N ⊂ H1
0 (Ω),

N = {u ∈ H1
0 (Ω) ; u ̸≡ 0 , I ′(u)u = 0}.

We can see that condition defining this subset is equivalent, given the characterization
of I in (1.7), to the following

∥u∥2 =
∫

Ω
|∇u|2 dx =

∫
Ω
|u|p dx = |u|pp .

Now, the functional I restricted to N will be

I(u) = 1
2 ∥u∥

2 − 1
p
∥u∥2 = (1

2 −
1
p

) ∥u∥2 ,

which is, once more, coercive and bounded below. One more time, we would need
first to prove that there exists a minimizing function of I restricted to N and, after
that, extend its condition as a weak solution to the entire space H1

0 (Ω).
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Furthermore, we shall treat in this work problems with another type of criticality
in the nonlinearity. This one is related to the Sobolev Embedding Theorems when kp = N .
This case of the embedding is important when we deal with problems containing the
N-Laplacian as the operator. Therefore, let us consider the following elliptic problem{

−∆Nu = f(u), x ∈ Ω,
u = 0, x ∈ ∂Ω,

(1.8)

where ∆N represents the operator

∆Nu = div (|∇u|N−2∇u).

When u is regular enough, we can write it as

∆Nu = |∇u|N−2 ∆u+ (N − 2) |∇u|N−4
N∑

i,j=1

∂2u

∂xi∂xj

∂u

∂xi

∂u

∂xj

.

Through another point of view, we can see the N-Laplacian as an operator from W 1,N
0 (Ω)

to its dual, given by

⟨∆Nu, v⟩ = −
∫

Ω
|∇u|N−2∇u∇v dx , ∀ u, v ∈ W 1,N

0 (Ω). (1.9)

With this, we can see that, if u is a weak solution to (1.8), we have, using u as the
test function, ∫

Ω
|∇u|N dx =

∫
Ω
f(u)u dx,

that means,
∥u∥N

W 1,N
0 (Ω) −

∫
Ω
f(u)u dx = 0.

Therefore, the functional associated to this problem,

I(u) = 1
2 ∥u∥

N
W 1,N

0 (Ω) −
∫

Ω
F (u) dx,

will be coercive and bounded below if f satisfies the growth condition

|f(s)| ≤ a+ b |s|q , for 0 < q < N − 1.

Furthermore, since the embedding W 1,N
0 (Ω) ↪→ Ls(Ω) is compact for every s ∈

[1,+∞), we have no problem extending our proofs involving constrained minimization
for the N-Laplacian case here (see [4]). What is then the critical condition that can be
studied here? The answer comes from N. Trudinger [7] and J. Moser [8]. The first, using
the power series expansion of the exponential function and some Sobolev estimates, was
able to prove that for any u ∈ W 1,N

0 (Ω), we can bound the integral∫
Ω
eα|u|N

′

dx,
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where N ′ = N
N−1 and α is a positive constant, independent of u.

Following this, Moser was able to improve this result, concluding that there exists
a α = αN such that the above estimate is valid for α ≤ αN and, moreover, is false for
α > αN . More specifically, the exact result achieved was that

sup
∥u∥p

W
1,N
0 (Ω)

≤1

∫
Ω
eα|u|N

′

dx

{
≤ c |Ω| , if α ≤ αN ,

= +∞, if α > αN ,
(1.10)

for some constant c > 0 dependent on N , where αN = Nω
1/(N−1)
N−1 , being ωN−1 the measure

of the unit sphere in RN . Thus, inequality (1.10) is called the Trudinger-Moser inequality
and the character of α renders αN the name critical Trudinger-Moser growth. This is,
therefore, the growth case which divides the problems in terms of difficulty.

1.4 FURTHER CHAPTERS

Now, we shall present, briefly, the problems we shall study in each following chapter.
More context will be given for all of them at the right moment. For now, we only cite
the main characteristics of the problems and the developments achieved up to now by
the current literature. All the main theorems present in this section and proved in the
following chapters were fitted into articles and submitted to esteemed journals, a fact
which reiterates their importance and contemporaneity.

In the second chapter, we look for solutions to the following class of elliptic nonlinear
problems 

−∆u = λuq−1 + f(u), x ∈ Ω,
u > 0, x ∈ Ω,

B(u) = 0, x ∈ ∂Ω.
(1.11)

For this particular problem, we will assume f to be of supercritical growth, in the sense of
Sobolev, and the main difference from the other cases is the assumption of the B operator as
the boundary condition, characterizing what we call a mixed Dirichlet-Neumann boundary
conditions. More precisely, B is defined as

B(u) = uχΣ1 + ∂u

∂ν
χΣ2 , (BC)

where both Σ1,Σ2 are smooth (N-1)-dimensional sub-manifolds of ∂Ω with positive measure
and such that Σ1 ∪Σ2 = ∂Ω, Σ1 ∩Σ2 = ∅ and Σ1 ∩Σ2 = Γ is a smooth (N-2)-dimensional
sub-manifold. Here, ν is the outward unitary normal vector to the boundary ∂Ω and χA

is the characteristic function of the set A.

Remark 1.4.1. The nomenclature “mixed Dirichlet-Neumann boundary conditions”
should be readily understood here, since the equality B(u) = 0 requires that u vanishes at
some part of ∂Ω, namely the sub-manifold Σ1, which constitutes the condition imposed by
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Dirichlet problems, and that the exterior derivative (or normal derivative) vanishes in the
complementary subset of the boundary ∂Ω, condition asked by Neumann problems.

We have seen how results become more scarce when we talk about nonlinearities
above the linear growth, with authors having to substitute the form of a power function
up for some other conditions restricting the behavior of f . One great contribution not
mentioned above was done by the work of Ambrosetti and Rabinowitz [9], where it was
assumed the problem {

−∆u = f(x, u) in Ω,
u = 0 on ∂Ω,

(1.12)

with the nonlinearity f : Ω×R→ R satisfying

(I1) f(x, 0) = 0 , lims→0
f(x,s)

s
= 0

(I2) |f(x, s)| ≤ a1 + a2|s|p , a1, a2 > 0 , 1 < p < N+2
N−2

together with the following condition

(AR) There exists r > 0 and θ > 2 such that
0 < θ F (x, s) ≤ f(x, s), for s > r, where F (x, s) =

∫ s

0 f(x, t)dt.

This last condition is known as the Ambrosetti-Rabinowitz (AR) condition and is
crucial to ensuring that the related functional still possesses the compactness required for
the Mountain Pass Theorem, as presented by the authors in the latter paper.

Seen that the (AR) condition is yet a limiting factor to the more general results,
many papers have then tried to drop this assumption using different techniques. In [10]
or [11], for example, the authors used a weaker version of (AR), concerning the growth
condition of F (x, t),

lim
s→∞

F (x, s)
s2 = +∞

to prove the existence of a nontrivial weak solution to problem (1.12) for functions f
satisfying the subcritical growth (I2) and that are almost linear near to the origin, using
again the Mountain Pass Theorem and adding also a parameter λ > 0 multiplying f .

Moreover, we can give more references to supercritical problems which achieved
the goal of generalizing the results beyond the (AR) condition. In [12], it was considered
the following problem 

−∆u = λuq(r)−1 + f(r, u), x ∈ B,
u > 0, x ∈ B,
u = 0, x ∈ ∂B,

(1.13)

where B ⊂ RN is the open unit ball and with f depending on the radial coordinate r = |x|
and satisfying a variable exponent growth

0 ≤ sf(r, s) ≤ a1|s|p(r),
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the function p(r) = 2∗ + αr, α > 0. There, the authors already generalized the problem
treated in [13], for which λ = 0 and where f was simply |s|p(r)−2s. Additionally, in [14],
the authors treated a similar radial problem, considering the whole RN and again without
the need for the (AR) condition.

On the other hand, another aspect of the problem we can give rise to more general
results is the boundary conditions. Problems with mixed boundary conditions have shown
to be more and more important in recent years, as exemplified in [15] and references
therein. The great work done by Peral and Colorado ([16]) treats the subcritical problem
subjected to the mixed Dirichlet-Neumann boundary condition given by (BC).

−∆u = λuq−1 + ur, x ∈ Ω,
u > 0, x ∈ Ω,

B(u) = 0, x ∈ ∂Ω,
(1.14)

where 1 < r < 2∗ − 1, 0 < q < r, λ > 0 and Ω ⊂ RN is a bounded domain.

Furthermore, still in this paper, the authors not only prove the existence of a
solution to problem (1.14), but also achieve multiplicity for such solutions and a non-
existence result for the problem depending on the parameter λ, as well as on the q

parameter, obtaining different results for the sublinear perturbation case (q < 1) and the
eigenvalue case (q = 1). It is worth citing also the results obtained in estimating the L∞

norm of solutions for (1.14). We observe, however, that the nonlinearity of equation (1.14)
is still quite specific, not achieving the critical growth or considering functions beyond the
polynomial function.

Paper [16], however, was not the first one to deal with the change in the boundary
conditions. Grossi, in the work [17], proved the existence for a version of problem
(1.14), with q = 1 and assuming the critical growth r = 2∗ − 1. Adimurthi, Pacella
and Yadava, in [18] treat the mixed Dirichlet-Neumann problem (1.14) for the equation
−∆u+ λαu = u2∗−1, where α ∈ C1(Ω), assuming some specific geometric conditions for
the Σ2 component of ∂Ω. We see that the consideration of the critical Sobolev growth
leads to significant scarcer results.

Nevertheless, following the development of the field, Ding and Tang, in [15], studied
a Hardy-Sobolev critical singular problem, also with mixed Dirichlet-Neumann boundary
conditions, which generalizes problem (1.14) to the critical Sobolev exponent case and
also achieve other interesting results of multiplicity and non-existence concerning the case
with Hardy terms. We intend to generalize the results even further by treating the case of
a superlinear nonlinearity (and without restraining ourselves to the polynomial function),
while still considering mixed Dirichlet-Neumann conditions at the boundary.

Turning back to Problem (1.11), the mixed boundary condition forces us to abandon
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the Sobolev Space H1
0 (Ω) for a more suitable one, namely

EΣ1(Ω) :=
{
v ∈ H1(Ω); v = 0 on Σ1

}
,

which does provides the correct boundary information for a solution of (1.11). It can be
seen that it preserves the properties of H1

0 (Ω) which are important for our solution, like
the structure of a Hilbert space and the Sobolev Embedding Theorems on Lp(Ω) spaces.
Furthermore, the presence of the mixed operator B compels us to adapt certain results
proper to Dirichlet Boundary conditions only, such as comparison results.

Over the nonlinearity f , we first assume the basic condition that its image be
positive for a positive argument, namely the sign property:

(H1) It has the sign property, namely:

0 ≤ f(t)t , t ∈ R ;

Furthermore, as we have mentioned, f is made supercritical in terms of Sobolev growth.
With this, we mean that we have

(H2) It has a critical or supercritical growth at infinite, in the sense that

lim inf
t→∞

f(t)
tr

=∞ , ∀ r ∈
(

1, N + 2
N − 2

)
;

We make, however, the following additional assumptions over the growth condition of f

(H3) We assume that there exists a number θ > 0 such that

lim sup
t→∞

f(t)
t2∗−1+θ

<∞ ;

(H4) There exists a sequence (Mn) with Mn →∞ and such that, for every r ∈ (0, N+2
N−1),

t ∈ [0,Mn] ⇒ f(t)
tr
≤ f(Mn)

(Mn)r
.

This last light condition on the increasing behavior of every f(t)
tr is what helps us

overcome the supercritical growth of f . We prove the existence and positiveness of a weak
solution for (1.11), fact summarized by the following theorem,

Theorem 1.4.1. If f : [0,∞) −→ R is a continuous function satisfying the growth
conditions (H1) - (H4), then there exists γ > 0 and Λ > 0 such that problem (1.11) has a
weak solution uλ ∈ EΣ1(Ω) ∩W 2, 2∗

2∗−1 (Ω) whenever 0 < θ < γ and 0 < λ < Λ.

Furthermore, we may also prove, for the same problem, a nonexistence result
concerning the range of the parameter λ. Namely that the set of parameters λ for which
(1.11) has a solution is bounded above. More precisely, we prove



23

Theorem 1.4.2. If f is a continuous function satisfying the growth conditions (H1) -
(H3), then the set of parameters λ for which problem (1.11) has a solution is bounded from
above.

Both Theorems 1.4.1 and 1.4.2 are present in our submitted and published article
[19], in the journal Complex Variables and Elliptic Equations.

Following that, we devote the third chapter to the resolution of the system, named
Schrodinger-Poisson (SP) type system, given by

−∆u− ϕu2∗−2 = λ
uγ in Ω,

−∆ϕ = f(u) in Ω,
u > 0 in Ω,
u = ϕ = 0 on ∂Ω.

(1.15)

Apart from the evident difference of presenting two equations instead of one, like in (1.11),
this problem differs from the first by introducing a singularity in one of the nonlinear
terms, while restraining the second one, characterized by the function f , to a subcritical or
critical growth, with no restriction on the behavior of f . This is an important improvement
since the critical growth is a quite important hindering factor to more classical methods
such as variational ones, as we have just seen. We ask that f satisfies only

0 ≤ f(s)s ≤ L|s|2∗
, L > 0. (1.16)

Problem (1.15) was shown to have a quite rich history in the area of study of
mathematical physics. One of the most general definitions of a Schrödinger-Poisson system
can be expressed by the following coupled equations{

−∆u+ V (x)u+ k(x)ϕ|u|q−2u = f(x, u) in R3,

−∆ϕ = k(x)|u|q in R3.
(1.17)

Benci and Fortunato [20] introduced the study of such a system to represent the
physical model of a charged particle interacting with an electromagnetic field, in the
quantum mechanics formulation, when assumed to have a stationary solution (for more
details on the applications of such study, see [21, 22] and references therein). There, it
took the following eigenvalue formulation

−1
2∆u− ϕu = ωu in Ω,

∆ϕ = 4πu2 in Ω,
ϕ = g on ∂Ω.

(1.18)

The condition ϕ = g represents our setting of the potential in the boundary of a given
subset Ω of R3 and g is assumed to be continuous. In addition, since u represents the
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amplitude of the wave function of the contained particle, it is necessary to impose the
condition of normalization on Ω, namely∫

Ω
u2 dx = 1.

We cite that the name of such system is due to the presence of a nonlinear stationary
Schrödinger equation, one of the central pieces of quantum mechanics, coupled with a
Poisson equation, which is derived from the Maxwell equations for the electric potential
(for this reason the two equations can also be referred as Schrödinger-Maxwell system).

For this reason, many papers have been interested in finding results about the
existence and multiplicity of solutions to Schrödinger-Poisson type systems, specially when
it includes terms with critical growth, where the methods available become more scanty.
For bounded domains, there was, for a long period, a certain scarcity of results of existence
for systems such as (1.17) and the ones attained still had a certain degree of restriction.
Nonetheless, there has been, more recently, a number of new results advancing the findings
for this type of problem.

In [23], it was considered the system
−∆u = λu+ ϕ|u|2∗−3u in Ω,
−∆ϕ = |u|2∗−1 in Ω,
u = ϕ = 0 on ∂Ω,

(1.19)

where Ω ⊂ RN , with N ≥ 3. Despite the choice of a critical exponent in the second
equation, the authors showed that, by using a reduction method, problem (1.19) can
still be treated through variational theory. Not only do they obtain solution for suitable
values of λ, but the also derive some nonexistence results for particular values of the same
parameter. This work already serves as a generalization for [24], where it is consider the
same system (1.19), with Ω = BR and N = 3.

Meanwhile, paper [25] treated the problem of a generalized Schrödinger-Poisson
type system 

−∆u+ ϵqϕf(u) = |u|p−1u in Ω,
−∆ϕ = 2qF (u) in Ω,
u = ϕ = 0 on ∂Ω,

(1.20)

where Ω ⊂ R3 is a bounded domain with smooth boundary, 1 < p < 5, ϵ = ±1, q > 0,
f : R→ R is a continuous function and F (s) =

∫ s

0 f(t)dt denotes its primitive function.
This generalizes various papers preceding it by considering f different from the identity
function. It reproduces, for example, the findings of [20] if p = 1, where the system was
treated as an eigenvalue problem. The existence results, however, depend strongly on the
assumption of small value for the parameter q, meaning that it still restricts more general
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cases. Again the assumptions therein allow the use of variational methods. Moreover, they
were also able to achieve multiplicity and non-existence results for certain cases.

Other papers introduced to this system a singular term in the first equation and
studied the modifications needed for such a case. In [26], for example, the author studied
the problem 

−∆u+ ηϕu = λu−r in Ω,
−∆ϕ = u2 in Ω,
u > 0 in Ω,
u = ϕ = 0 on ∂Ω,

(1.21)

finding different results of existence when varying the domain of the parameter λ and
for η = ±1. The quite specific form of the nonlinearity in the second equation and its
quadratic form allowed for quite promising conclusions. More specifically, it was presented
the following results

Theorem 1.4.3. Assume η = 1. Then system (1.21) has a unique positive solution for
every λ > 0.

Theorem 1.4.4. Assume η = −1. Then there exists a constant Λ = Λ(r,Ω) > 0, such
that for any λ ∈ (0,Λ) system (1.21) has at least two different positive solutions.

Finally, in [27], the authors introduced the critical growth to this system already
containing a singularity, treating the following problem

−∆u+ ηϕu2∗−2 = λ
uγ in Ω,

−∆ϕ = u2∗−1 in Ω,
u > 0 in Ω,
u = ϕ = 0 on ∂Ω,

(1.22)

where η = ±1, γ ∈ (0, 1) is a constant and λ > 0 again a real parameter. They obtained
the same results, obtaining in both cases existence and uniqueness (or multiplicity) based
on variational methods.

It is used here a sequence of auxiliary functions fk called Strauss approximation, in
virtue of W. A. Strauss, which introduced them in [28]. They are important elements to our
work, since they are regular enough - Lipschitz and bounded functions - and approximate
f uniformly in bounded domains.

For problem (1.15), we have achieved the following result, which is part of the
article [29], recently published in the Journal of Mathematical Analysis and Applications.

Theorem 1.4.5. If f : [0,∞) −→ R is a continuous function satisfying the growth
condition (1.16). Then there exists Λ > 0 such that, for every 0 < λ < Λ, Problem (1.15)
has a pair of solutions uλ, ϕλ ∈ H1

0 (Ω) ∩W 2,p(Ω), with p = 2∗

2∗−1 .



26

Finally, the last problem we deal with, treated in Chapter 4, involves the more
general N-Laplacian operator, defined in (1.9). We study the following system, again of
Schrodinger-Poisson type, 

−∆Nu− ϕf(u)
u

= λ
uγ in Ω,

−∆Nϕ = f(u) in Ω,
u > 0 in Ω,
u = ϕ = 0 on ∂Ω.

(1.23)

The main difference to (1.15), apart from - but related to - the N-Laplacian operator, is
that we impose now a exponential growth on f , dictated by the Trudinger-Moser inequality
(1.10). We ask f to satisfy

0 ≤ f(s)s ≤ L|s|r+1 exp{αs
N

N−1}, L, α > 0, r > N − 1. (1.24)

Also, as we have already seen, the change in operator forces us to work in the
W 1,N

0 (Ω) and some results have again to be adapted to this new frame of work.

It is interesting to see how this condition poses a critical growth in the absence
of the critical exponent in the Sobolev sense, as is the case for RN , where N = 2. A
good example of this condition being applied to a (SP) system is given by [30], where the
nonlinearity f is present in the first equation,{

−∆u+ ϕu = f(u) in Ω,
∆ϕ = 2πu2 in Ω.

(1.25)

There, they treat the “zero mass case", translated as the condition f(u)
u
→ 0 as u→ 0. As

we said, f is supposed to obey a critical exponential growth, satisfying

(F1) There exists a constant α0 > 0 such that

lim
|t|→∞

|f(t)|
eαt2 = 0 , ∀ α > α0

and
lim

|t|→∞

|f(t)|
eαt2 = +∞ , ∀ α ≤ α0.

For the existence of a ground state solution to (1.25), more conditions have to be
assumed, including some which dictate the behavior of f , such as

(F2) There exists l ∈ [0,+∞) such that

lim
t→0

f(t)
|t|t

= l;

(F3) For all t ∈ R,
1
3f(t)t ≥ F (t) =

∫ t

0
f(s) ds ≥ 0;
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We see then that the papers we have mentioned which treats (SP) type systems in
the case N ≥ 3 had to impart a subcritical or critical growth, in the sense of Sobolev, to
the nonlinearity, with results in the critical case already being scarce due to the lack of
compactness of the spaces we encounter, which hinders the use of variational methods.
The case N = 2 and critical exponential growth encounters different but also important
complications, which leads to several additional constraints, as we have just seen. Moreover,
the presence of a singularity produces even more obstacles, now being the possibility of
a blowup at certain points in Ω. The advantages of this work are then better seen in
the conditions imposed over the nonlinearity. For the η = −1 case, we make use of the
non-variational Galerkin Method, which helps us expand the reach of our results to more
general conditions over f , while we can treat growth conditions beyond the critical Sobolev
growth (for that we also depend greatly on the Trudinger-Moser inequality). At the same
time, it brings us no insurmountable difficulties in dealing with the singular term. We
do this while keeping the nonlinearity f quite general in its behavior. Nonetheless, we
could not use the same approach for the case η = 1. For this purpose, we overcome these
difficulties by combining suitable estimates and Schauder fixed point theory and we find
the existence of solutions.

We now state our main results.

Theorem 1.4.6. If η = −1 and f : [0,∞) −→ R is a continuous function satisfying the
growth condition (1.24). Then there exists Λ > 0 such that, for every 0 < λ < Λ, problem
(1.23) has a solution pair uλ, ϕλ ∈ W 1,N

0 (Ω).

Before continuing, we would like to point out a remark that will be useful later one.

Remark 1.4.2. When f is such that

|f(s)| ≤ c1 + c2|s|N−1, ∀ s ∈ R,

then the solution pair uλ, ϕλ obtained in Theorem 1.4.6 will belong to C1,τ (Ω), for some
τ ∈ (0, 1). This follows directly from the considerations in [31] (we may notice that a more
general nonlinearity containing a singularity is used as a prototype).

When η = 1, we consider the limit problem:
−∆Nu+ ϕur−1 exp{αuN ′} = λ

uγ in Ω,
−∆Nϕ = ur exp{αuN ′} in Ω,
u > 0 in Ω,
u = ϕ = 0 on ∂Ω.

(1.26)

with α ≥ 0, λ > 0 being again real parameters, as is γ ∈ (0, 1), and recalling that N ′ = N
N−1 .

For this case, our result is as follows.
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Theorem 1.4.7. Let us suppose α > 0 arbitrary and r such that

(γ + rN ′ − 1)
(

1− γ
N − 1

)
> 1.

Then there exists Λ > 0 such that, for every 0 < λ < Λ, problem (P4) has a solution
pair uλ, ϕλ ∈ C1

0(Ω). If α = 0 the problem (P4) has a unique positive solution for every
0 < λ < Λ.

In resemblance to the first results, Theorems 1.4.6 and 1.4.7 are both two results
of the article [], submitted to the .
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2 AN EQUATION INVOLVING SUPERCRITICAL SOBOLEV
GROWTH WITH MIXED DIRICHLET-NEUMANN BOUNDARY
CONDITIONS

In this Chapter, we look at our first elliptic problem resolved by means of the
Galerkin Method. We shall consider, as expressed in Chapter 1, the following elliptic
problem 

−∆u = λuq−1 + f(u), x ∈ Ω,
u > 0, x ∈ Ω,

B(u) = 0, x ∈ ∂Ω,
(P1)

where the parameters satisfy 1 < q < 2 and λ > 0. The first term is thus a sublinear
perturbation and is present to avoid non existence results such as Pohozaev’s. Furthermore,
we will consider here f to be a continuous function satisfying the following conditions:

(H1) It has the sign property, namely:

0 ≤ f(t)t , t ∈ R ;

(H2) It has a critical or supercritical growth at infinite, in the sense that

lim inf
t→∞

f(t)
tr

= +∞ , ∀ r ∈ (1, 2∗ − 1] ;

(H3) We assume that there exists a number θ > 0 such that

lim sup
t→∞

f(t)
t2∗−1+θ

< +∞ ;

(H4) At last, we assume that there exists a sequence (Mn) with Mn →∞ and such that,
for every r ∈ (0, 2∗ − 1),

t ∈ [0,Mn] =⇒ f(t)
tr
≤ f(Mn)

(Mn)r
.

Additionally, we also recall from Section 1.4 that the boundary condition is given
by B(u) defined as follows

B(u) = uχΣ1 + ∂u

∂ν
χΣ2 . (BC)

Remark 2.0.1. In sum, conditions (H1) - (H4) can all be (loosely) summed up by the
following: We ask f to be positive when its argument is positive (which is what we are
looking for, since we ask u > 0) and of supercritical growth at infinity, but we assume that
the behavior of this “supercriticality” be ever growing, at last in supremum.

We present again our main results for the present chapter, for the convenience of
the reader.
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Theorem 2.0.1. If f : [0,∞) −→ R is a continuous function satisfying the growth
conditions (H1) - (H4), then there exists γ > 0 and Λ > 0 such that problem (P1) has a
weak solution uλ ∈ EΣ1(Ω) ∩W 2,p(Ω), p = 2∗

2∗−1 , whenever 0 < θ < γ and 0 < λ < Λ.

Following this existence result, we shall prove a non-existence one, concerning the
nature of the set in which λ must be so that Problem (P1) has a solution. More specifically,
we prove

Theorem 2.0.2. If f is a continuous function satisfying the growth conditions (H1) -
(H3), then the set of parameters λ for which problem (1.11) has a solution is bounded from
above.

As we have pointed out, Theorems 2.0.1 and 2.0.2 comprise a larger number of
functions than those considered in the current literature. For the sake of exemplification,
we would like to mention the following functions which verify conditions (H1) - (H4), but
do not verify, for example, the (AR) condition. They are part of a much greater set of
functions addressed by the results of the present chapter.

i) f(u) =
{

0, if u ≤ 0,
u2∗−1+θ(ln(u))+, if u ≥ 0,

ii) f(u) =
{

0, if u ≤ 0,
u2∗−1+θ sen2(u), if u ≥ 0.

We have also mentioned in Chapter 1 that it is not enough to work with the space
H1(Ω) and is not sufficient to work with H1

0 (Ω) either, since we need our solution to be
zero at some, but not at all, parts of the boundary ∂Ω. The best choice then is to work
with the space EΣ1(Ω) := {v ∈ H1(Ω); v = 0 on Σ1}, which can also be identified as the
closure of C1

c (Ω∪Σ2) with the norm of H1(Ω) (in parallel to the characterization of H1
0 (Ω)

as the closure of C1
c (Ω) with the same norm). Its effectiveness relies on the fact that we

still have the properties that make H1
0 (Ω) suitable to problems with Dirichlet boundary

conditions, such as the continuous embedding (see, for more, [17])

EΣ1(Ω) ↪→ Lq(Ω) , q ∈ [1, 2∗] , (2.1)

or the fact that EΣ1(Ω) is a separable Hilbert space, which is a crucial demand because it
implies that this space has an orthonormal basis, allowing us to use the Galerkin Method.
The norm of this space is initially defined as the norm on H1(Ω) but, as Σ1,Σ2 are assumed
to be of positive measure, it can be shown (see [32]) that the Poincaré Inequality is satisfied
in EΣ1 , so that one can use the equivalent norm

∥u∥EΣ1
=
(∫

Ω
|∇u|2 dx

)1/2

,



31

which we shall denote from now on, throughout this chapter, only by ∥.∥, for convenience.

The ideas that permit us to consider the case of a supercritical nonlinearity were
inspired and adapted from the work due to Alves and de Figueiredo [33] and it was required
a significant amount of modifications on the results used to adjust the findings to our
studied problem. Since we are looking for positive solutions, we can assume f(s) = 0 if
s ∈ (−∞, 0).

Before the proper beginning to our proof, we first give a comparison theorem,
which we have adapted from the Dirichlet boundary case (result [34, Lemma 3.3.]) to our
mixed-boundary problem. Consider the problem

−∆u = g(u), in Ω,
u > 0, in Ω,
B(u) = 0, on ∂Ω,

(2.2)

with g(u) ≥ 0 for u > 0. A weak supersolution of a Dirichlet-Neumann boundary problem
such as (2.2) is defined as a function u ∈ EΣ1(Ω) such that u > 0 in Ω and such that∫

Ω
∇u∇ϕ dx ≥

∫
Ω
g(u)ϕ dx

for every test non-negative function ϕ ∈ EΣ1(Ω). A weak subsolution for (2.2) is defined
in the same manner with the inequality switched. It is evident that a weak solution is
both a weak supersolution and a weak subsolution.

Theorem 2.0.3. If u, v ∈ EΣ1(Ω) are, respectively, a weak supersolution and a weak
subsolution to problem (2.2), with g satisfying g(s) ≥ 0 for s ≥ 0 and g(s)/s is a decreasing
function, then u ≥ v a.e. in Ω.

Proof. First, let θ(t) be a smooth non-decreasing function such that θ(t) = 0 for t ≤ 0 and
θ(1) = 1 for t ≥ 1. Moreover, for ϵ > 0, set

θϵ(t) = θ

(
t

ϵ

)
.

By hypothesis, we must have∫
Ω
∇u∇(vθϵ(v − u)) dx ≥

∫
Ω
g(u)vθϵ(v − u) dx,

∫
Ω
∇v∇(uθϵ(v − u)) dx ≤

∫
Ω
g(v)uθϵ(v − u) dx

In addition, we can write∫
Ω
g(u)vθϵ(v − u) dx−

∫
Ω
g(v)uθϵ(v − u) dx ≤
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≤
∫

Ω
∇u∇(vθϵ(v − u)) dx−

∫
Ω
∇v∇(uθϵ(v − u)) dx =

=
∫

Ω
vθ′

ϵ(v − u)∇u · (∇v −∇u) dx−
∫

Ω
uθ′

ϵ(v − u)∇v · (∇v −∇u) dx =

= −
∫

Ω
vθ′

ϵ(v − u)(∇u−∇v)2 dx+
∫

Ω
(v − u)θ′

ϵ(v − u)∇v · (∇v −∇u) dx ≤

≤
∫

Ω
∇v∇(γϵ(v − w)) dx ≤

∫
Ω
g(v)γϵ(v − u) dx

where γϵ(t) =
∫ t

0 sθ
′
ϵ(s)ds. Since 0 ≤ γϵ(t) ≤ ϵ for all t ∈ R and g ∈ L1(Ω), we verify that∫

Ω
vu

(
g(u)
u
− g(v)

v

)
θϵ(v − u) dx ≤ ϵ.

Taking the limit ϵ→ 0, we can write∫
[v>u]

vu

(
g(u)
u
− g(v)

v

)
dx ≤ 0,

where we have denoted the set {x ∈ Ω ; v(x) > u(x)} by [v > u]. This, in turn, implies
that the measure of the set [v > u] is zero. Thus, u ≥ v a.e. in Ω and the proof is
complete.

Now, we shall prove a result used directly in our application of the Galerkin Method.
For that, we need first the famous Brouwer fixed point theorem (see, for example, [35,
Theorem 5.2.3.]).

Theorem 2.0.4 (Brouwer). Let f : Br(x) −→ Br(x) be a continuous function defined on
Br(x) ⊂ Rm. Then, there exists z ∈ Br(x) such that f(z) = z, that is, z is a fixed point
of f .

With it, we can prove the following result, known as the Fundamental Lemma.

Lemma 2.0.1. Let h : Rm −→ Rm be a continuous function such that ⟨h(α), α⟩ ≥ 0 for
every α ∈ Rm with |α| = R, for some R > 0. Then there exists an element z ∈ BR(0)
such that h(z) = 0.

Proof. If we suppose f(x) ̸= 0 inBr(x), we can then consider the function g : Br(x) −→ RN

defined by
g(x) = − R

|f(x)|f(x).

It is well-defined and continuous in BR(0). Besides, we can see that

|g(x)| = R

|f(x)| |f(x)| = R.
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By Brouwer Fixed Point Theorem, there exists z ∈ BR(0) such that g(z) = z,
which implies that

R2 = |g(z)|2 = ⟨g(z), g(z)⟩ = ⟨z, g(z)⟩ = − R

|f(z)|⟨z, f(z)⟩.

Since ⟨z, f(z)⟩ ≥ 0, we obtain

0 < R2 = − R

|f(z)|⟨z, f(z)⟩ ≤ 0

which is a contradiction. Thus, x0 ∈ Br(x) must be such that f(x0) = 0.

We are now in position to give the proofs of our two main theorems and we do this
in the following sections.

2.1 PROOF OF THEOREM 2.0.1

Our goal is to use the Galerkin Method to prove Theorem 2.0.1. For that, we
will need to define, with the help of the real sequence defined in (H4), a sequence of
auxiliary equations that will be important for our purpose. More specifically, for each
k ∈ N, we define the auxiliary truncation functions by choosing r ∈ (1, 2∗ − 1) such that
2∗ − 1− r < θ and we set

fk(t) =


0, t ≤ 0,

f(t), 0 ≤ t ≤Mk

f(Mk)
(Mk)r t

r, t ≥Mk.

(2.3)

Remark 2.1.1. Notice that we define fk to be such that r in its definition is independent
of k. We see that we are really truncating our original function, making it subcritical for
large arguments. Furthermore, in view of conditions (H3), (H4) and the choice of r, we
can prove that, for k big enough, fk satisfies, for a constant C > 0,

|fk(v)| ≤ C(Mk)2θ|v|r. (2.4)

Indeed, for all t > 0, condition (H4) and (2.3) gives

fk(t) ≤ f(Mk)
(Mk)r

tr

and, by (H3), if k is sufficiently large,
f(Mk)
(Mk)r

≤ C(Mk)2∗−1−r+θ ≤ C(Mk)2θ.

For each k ∈ N, let us consider the following auxiliary problem
−∆u = λuq−1 + fk(u) + σω, x ∈ Ω,

u > 0, x ∈ Ω,
B(u) = 0, x ∈ ∂Ω,

(Pk,σ)

where σ > 0 is a real parameter and ω ∈ C∞
0 (Ω) is a positive fixed function.
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Remark 2.1.2. Let us see that if u is a solution to (Pk,0) and is such that |u|+∞ ≤Mk,
then we actually obtain that u is a solution to our main problem (1.11). This will be
exactly our approach at the end of this chapter when we seek to recover regularity of our
solution.

To carry out the process of finding the solution to (P1), we must first look for a
solution to each equation (Pk,σ). For that, let β = {e1, e2, . . . , en, . . . } be an orthonormal
basis of EΣ1(Ω) and we define the subspace Vm = [e1, e2, . . . , em] of EΣ1(Ω) as being
generated by the first m vectors of β and equipped with the norm ∥u∥ =

(∫
Ω |∇u|

2 dx
) 1

2

already mentioned. With these conditions, each Vm, being a finite Hilbert Space, is
isomorphic to Rm. That allows us to define the function F : Rm −→ Rm whose coordinate
functions are

Fj(α) =
∫

Ω
∇u∇ej dx−λ

∫
Ω
(u+)q−1ej dx−

∫
Ω
fk(u+)ej dx−σ

∫
Ω
ωej dx, j = 1, 2, . . . ,m,

(2.5)
where u =

∑m
i=1 αiei is the function in Vm related to α = (α1, α2, . . . , αm) through the

isomorphism mentioned above.

To get the desired results, we shall also apply Lemma 2.0.1 to the function F , so
the first step here is to show that it satisfies its conditions. Let us first check continuity.

Proposition 2.1.1. The function F : Rm −→ Rm defined in (2.5) is continuous.

Proof. Since we have already mentioned the isomorphism between Rm and Vm, we can
consider a sequence converging vn → v in Vm and it is sufficient to prove that each Fj(vn)
converges to Fj(v). Notice that this is immediate for the first, second, and last term of
Fj, using the Holder Inequality and the Sobolev Embedding Theorems. What we have to
show is only the continuity of the term

∫
Ω fk(u+)ej dx, but here we can use the fact that

each fk satisfies condition (2.4). By that, for any sequence vn, we shall have

|fk(vn+)ej| ≤ Ck|vn+|r|ej| ≤ C1,k|vn|2
∗ + C2,k|ej|

2∗
2∗−r ,

where was used Young’s inequality with conjugate exponents 2∗

r
and 2∗

2∗−r
. Thus, if we

have a sequence vn → v in some Vm, we know that ∥vn∥, and therefore |vn|2∗ is bounded,
so that

|fk(vn+)ej| ≤ gk , for some gk ∈ L1(Ω).

From the fact that this bound does not depend on n, the DCT readily implies that∫
Ω
fk(vn+)ej dx

n→+∞−−−−→
∫

Ω
fk(v+)ej dx, (2.6)

proving the continuity of F .

Now, what remains to be done is prove the following proposition.
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Proposition 2.1.2. There exists a real number R > 0 such that, for |α| = R, we have
⟨F (α), α⟩ ≥ 0.

Proof. By definition, we have

⟨F (α), α⟩ =
m∑

i=1

Fi(α)αi

=
m∑

i=1

(∫
Ω
∇u∇ei dx− λ

∫
Ω
(u+)q−1ei dx

−
∫

Ω
fk(u+)ei dx− σ

∫
Ω
ωei dx

)
αi

=
∫

Ω
∇u∇

(
m∑

i=1

eiαi

)
dx− λ

∫
Ω
(u+)q−1

(
m∑

i=1

eiαi

)
dx

−
∫

Ω
fk(u+)

(
m∑

i=1

eiαi

)
dx− σ

∫
Ω
ω

(
m∑

i=1

eiαi

)
dx

=
∫

Ω
|∇u|2 dx− λ

∫
Ω
(u+)q dx−

∫
Ω
fk(u+)u+ dx− σ

∫
Ω
ωu dx.

Again by the Sobolev Embedding Theorems, we can write∫
Ω
uq

+ dx ≤
∫

Ω
|u|q dx ≤ C1 ∥u∥q and

∫
Ω
ωu dx ≤ C2 ∥u∥ (2.7)

so that
⟨F (α), α⟩ ≥ ∥u∥2 − λC1 ∥u∥q −

∫
Ω
fk(u)u dx− σC2 ∥u∥ ,

where we remember that 1 < q < 2 < 2∗. By relation (2.4), we can also estimate the term
with the auxiliary functions by∫

Ω
fk(u)u dx ≤ C(Mk)2θ

∫
Ω
|u|r+1 dx ≤ C3 ∥u∥r+1 . (2.8)

Now, observing the behavior of the function g(t) = t2−λC1t
q−C3t

r+1, it is evident,
since r + 1 > 2, that h(t) = t2 − C3t

r+1 > 0 for every 0 < t < C
1

1−r

3 . Besides that, a quick
study of its derivatives shows us that

R =
(

2
C3 (r + 1)

) 1
r−1

< C
1

1−r

3

is a local maximum and h(R) > 0. Thus, considering λ > 0 and σ∗ > 0 such that

0 < λ < Λ = R2−q − C3R
r+1−q

C1
, σC2R < R2 − λC1R

q − C3R
r+1,

we have
⟨F (α), α⟩ ≥ ∥u∥2 − λC1 ∥u∥q − C3 ∥u∥r+1 − σC2 ∥u∥ > 0

provided |α| = ∥u∥ = R, as intended.
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Consequently, we have found a sequence of functions vm ∈ Vm, with ∥vm∥ ≤ R,
such that F (vm) = 0, i.e., for each j = 1, 2, ...,m,∫

Ω
∇vm∇ej dx− λ

∫
Ω
(vm+)q−1ej dx−

∫
Ω
fk(vm+)ej dx− σ

∫
Ω
ωej dx = 0. (2.9)

It is easy to see that, from the linearity of the expressions in the left side of (2.9),
we can expand the result to all Vm, that means∫

Ω
∇vm∇ϕ dx−λ

∫
Ω
(vm+)q−1ϕ dx−

∫
Ω
fk(vm+)ϕ dx−σ

∫
Ω
ωϕ dx = 0, ∀ ϕ ∈ Vm. (2.10)

What we now have is a sequence (vm)m∈N ∈ EΣ1(Ω) whose norm is bounded by
the constant R. Since EΣ1(Ω) is a Hilbert Space, it is also reflexive and therefore it is
weakly compact. This means that we can obtain a subsequence, which we will still denote
by (vm), and a function v ∈ EΣ1(Ω), such that

vm ⇀ v in EΣ1(Ω) and vm → v in Ls(Ω), s ∈ [1, 2∗], (2.11)

where the second convergence was obtained by the Sobolev Embedding Theorems.

Now, using (2.4) and the same reasoning we applied to achieve (2.6), we have,
passing the limit m→∞,

λ

∫
Ω
(vm+)q−1ϕl dx −→ λ

∫
Ω
(v+)q−1ϕl dx,∫

Ω
fk(vm+)ϕl dx −→

∫
Ω
fk(v+)ϕl dx.

Thus, we arrive at∫
Ω
∇v∇ϕl dx− λ

∫
Ω
(v+)q−1ϕl dx−

∫
Ω
fk(v+)ϕl dx− σ

∫
Ω
ωϕl dx = 0, ∀ ϕ ∈ Vl.

We can notice that this last equation is true for every l ∈ N. By the density of
the spaces Vl in EΣ1(Ω), we can relate to each ϕ ∈ EΣ1(Ω) a sequence (ϕl)l∈N with each
ϕl ∈ Vl and passing the limit l→∞, we achieve∫

Ω
∇v∇ϕ dx− λ

∫
Ω
(v+)q−1ϕ dx−

∫
Ω
fk(v+)ϕ dx− σ

∫
Ω
ωϕ dx = 0, ∀ ϕ ∈ EΣ1(Ω).

At last, we can show that v(x) ≥ 0 for every x ∈ Ω. This is evident, since, using
v−(x) = max{0,−v(x)} as a test function,

−∥v−∥2 =
∫

Ω
∇v∇(v−) dx =

∫
Ω
(v+)q−1v− dx+

∫
Ω
fk(v+)v− dx+ σ

∫
Ω
ωv− dx ≥ 0,

showing that v = v+. In particular, this implies that we must have, apart from a null set,
v ≥ 0 in the boundary ∂Ω. Furthermore, to show that v is strictly positive we can use the
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Maximum Principles applied to the set Ω. If we suppose there exists a point x ∈ Ω for
which v(x) = 0, then we would conclude that v must be a constant function. But, this
would imply σω = 0, which is a contradiction. By that, this function must be strictly
positive in Ω, thus being a weak solution to the problem (Pk,σ). To outline the dependence
of the parameter σ, we denote this function by vσ.

Since each vm obtained in (2.9) must be bounded in the EΣ1(Ω) norm by a constant,
so will be each vσ, and since this bound is uniform (that is, does not depend on σ) we can
do the same reasoning as in (2.11) to the sequence of functions vσ to obtain a function in
EΣ1(Ω), which is the weak solution of the problem

−∆u = λuq−1 + fk(u), x ∈ Ω,
u > 0, x ∈ Ω,

B(u) = 0, x ∈ ∂Ω,
(Pk)

and which we will denote by vk, again to reassure its dependence of the index k in the
auxiliary equation.

It is also evident that, taking the limit σ → 0, we get vk ≥ 0 in Ω. More than that,
each solution of (Pk,σ) is evidently a weak supersolution of the problem


−∆u = λuq−1, x ∈ Ω,

u > 0, x ∈ Ω,
B(u) = 0, x ∈ ∂Ω,

(2.12)

which we know to have a classical solution w ∈ EΣ1(Ω) and, therefore, a weak subsolution.
By Theorem 2.0.3, we can assure that vσ ≥ w > 0, which in turn leads to vk ≥ w > 0 in
Ω. It is important to observe that this result does not depend on the index k.

Now, we can proceed with the proof of Theorem 2.0.1, extending the results to the
main problem (P1). First we notice that, for each k ∈ N, taking f1 = λvq−1 + fk(v), we
have

|f1| = |λvq−1 + fk(v)| ≤ λ|v|q−1 + C(Mk)2θ|v|r.

Thus, the nonlinearity of each problem (Pk) is bounded in L
2∗
r (Ω). With that, we

conclude that vk ∈ W 2, 2∗
r (Ω) and

∥vk∥
W 2, 2∗

r (Ω)
≤ D1

(
|f1|

L
2∗
r (Ω)

+ |vk|
L

2∗
r (Ω)

)
.

Now, since
∥vk∥ ≤ lim inf

m→∞
∥vm∥ ≤ R, (2.13)

we can use the Sobolev Embedding Theorems to prove that

∥vk∥
W 2, 2∗

r (Ω)
≤ D2M

2θ
k .
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What we do next is prove that, for a large k, lim supx∈Ω |vk(x)| ≤Mk, so that vk

can actually be considered a solution of the main problem (P1). We do this by the method
of Bootstrapping, which proceeds as follows: if 2∗

r
> N

2 , then we have W 2, 2∗
r (Ω) ↪→ Cγ(Ω)

and since Ω is bounded,
∥vk∥L∞ ≤ D2M

2θ
k ,

so that, if θ ∈ (0, 1
2), we can write, provided that Mk is large enough,

∥vk∥L∞ ≤Mk.

If 2∗

r
= N

2 , then W 2, 2∗
r (Ω) ↪→ Lt(Ω) for every t ∈ [1,∞). But, this implies that we

can take t > N
2 r such that λvq−1 + fk(v) ∈ L t

r (Ω) and consequently vk ∈ W 2, t
r (Ω). By the

same argument as above,

∥vk∥W 2, t
r (Ω) ≤ D3

(
|f |

L
t
r (Ω) + |vk|L t

r (Ω)

)
and by the estimates on fk,

∥vk∥W 2, t
r (Ω) ≤ D3

(
M

(2θ)(r+1)
k +M2θ

k

)
.

Taking θ ∈ (0, 1
2(1+r)), we get for Mk large enough

∥vk∥L∞ ≤ ∥vk∥
W 2, 2∗

r (Ω)
≤Mk.

At last, for the case p = 2∗

r
< N

2 , we will apply the former cases in a iterative
process. We note first that since r ∈

(
1, N+2

N−2

)
, there must existe a ϵ > 0 such that

p = (1 + ϵ) 2N
N + 2 .

By the Sobolev-Morrey Embeddings, we have

W 2,p(Ω) ↪→ Ls1(Ω) , s1 = Np

N − 2p,

implying that vk ∈ Ls1(Ω) and, thus, λ(vk)q−1 + fk(vk) ∈ L
s1
r (Ω). Consequently, vk ∈

W 2,p1(Ω), where we defined p1 = s1
r

.

To see that we have elevated the regularity of vk, we notice that
p1

p
= s1

2∗ =
(

Np

N − 2p

)(
N − 2

2N

)
= (1 + ϵ)(N − 2)

N − 2− 4ϵ > 1 + ϵ.

We can again expect p1 to fall into one of those three cases regarding its relation
with N

2 . The first two cases will give us the desired result, just as before. If, however, we
have again p1 <

N
2 , we now reason that, by the same arguments as before,

vk ∈ W 2,p2(Ω) , where p2 = s2

r
, s2 = Np1

N − 2p1
.
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Again, we see that

p2

p1
= Np1(N − 2p)
Np(N − 2p1)

> (1 + ϵ)
(
N − 2p
N − 2p1

)
> 1 + ϵ.

We can show that, repeating this argument a finite number of times, we prove that
vk ∈ W 2,p′(Ω) for some p′ ≥ N

2 and we will obtain one of the two first cases, proving that
there exist a number γ such that |vk|∞ ≤Mk for some large k, provided θ ∈ (0, γ).

We have then completed the proof of Theorem 2.0.1.

2.2 PROOF OF THEOREM 2.0.2

Assume, by contradiction, that λ∗ = +∞. This means that there exists a sequence
λn → +∞ and solutions un ∈ EΣ1(Ω) ∩W 2, 2∗

2∗−1 (Ω) to problem (P1), with un > 0 in Ω for
each n.

Fix 0 < ξ < 2∗ − 2 and λ0 > 1. Define the auxiliary function

Pλ(t) = λ

λ0
tq−1 + t1+ξ, t > 0.

Notice that, for λ big enough,

λtq−1 + f(t) ≥ Pλ(t), for t > 0. (2.14)

Indeed, we begin by noticing that, by condition (H2), there exists t0 > 1 such that

f(t) ≥ t2
∗−1, for t > t0.

With this, we can divide our interval (0,+∞) into three parts.

t ∈ (0, 1): For t ∈ (0, 1), we have tq−1 > t1+ξ, so that if λ is such that λ(1−λ−1
0 ) > 1,

we shall have
λ

(
1− 1

λ0

)
tq−1 + f(t) ≥ tq−1 > t1+ξ.

t ∈ (t0,+∞): Since t0 > 1, for t ∈ (t0,+∞), we have just seen that f(t) ≥ t2
∗−1 >

t1+ξ and therefore we have again the desired inequality.

t ∈ [1, t0]: At last, for t ∈ [1, t0], we can take λ > λ0t1+ξ
0

λ0−1 , meaning we obtain

λ

(
1− 1

λ0

)
tq−1 + f(t) ≥ λ

(
1− 1

λ0

)
≥ t1+ξ

0 ≥ t1+ξ.

With this, we have just shown that choosing λ > max{ λ0
λ0−1 ,

λ0t1+ξ
0

λ0−1 }, the inequality
in (2.14) is valid for all values of t > 0.
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Now, let us see that there exists a constant Cλ > 0 such that

λPλ(t) ≥ Cλt, for t > 0. (2.15)

Indeed, let us consider the function

Qλ(t) = Pλ(t)t−1 = λ

λ0
tq−2 + tξ.

It is evident that Qλ(t)→∞ as t→ 0+, as well as in the limit t→∞. Furthermore,
let t1 be such that Qλ(t1) = Cλ is the minimum value of Qλ, meaning t1 > 0 is the unique
root of

λ

λ0
(q − 2)tq−3 + ξtξ−1 = 0.

This gives us

t1 =
(
λ(2− q)
λ0ξ

) 1
2+ξ−q

, Cλ = λ
ξ

2+ξ−q

[
1
λ0

(
2− q
λ0ξ

) q−2
2+ξ−q

+
(

2− q
λ0ξ

) ξ
2+ξ−q

]
.

Notice that t1 increases as λ increases, since q < 2, and the constant Cλ has the same
behavior with respect to λ. Here we are considering λ sufficiently large.

Let σ1 > 0 be the first eigenvalue of the Laplacian and φ1 > 0 the associated first
eigenfunction satisfying {

−∆φ1 = σ1φ1 in Ω
B(φ1) = 0 on ∂Ω.

Since Cλn → ∞ as λn → ∞, for each given δ > 0, there is λn0 such that Cλn0
≥ σ1 + δ.

Hence the solution un0 > 0 of (P1) corresponding to λn0 satisfies{
−∆un0 ≥ Cλn0

un0 ≥ (σ1 + δ)un0 in Ω
B(un0) = 0 on ∂Ω.

On the other hand, taking ε ∈ (0, 1) small enough we obtain εφ1 < un0 in Ω, this being
possible because un0 ≥ φ1 and ∂φ1/∂ν < 0 on ∂Ω. Furthermore, we have{

−∆(εφ1) = (εσ1)φ1 ≤ (σ1 + δ)(εφ1) in Ω,
B(φ1) = 0 on ∂Ω,

and hence εφ1 is a sub-solution. By the sub-supersolution method (for a more detailed
discussion of this method for different kinds of boundary condition, see [36]), there is a
solution εφ1 < ζ < un0 in Ω of{

−∆ζ = (σ1 + δ)ζ in Ω
B(ζ) = 0 on ∂Ω.

We thus have a contradiction to the fact that σ1 is isolated (the fact that σ1 is isolated
for the Dirichlet problem is very well know, but we can obtain the same results for the
Neumann boundary conditions and, most importantly, for the mixed boundary conditions
problem. For that, see, for instance, [16] and the references it cites).

We conclude from this that we must have λ∗ <∞.
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3 SOLUTION FOR A GENERALIZED SCHRÖDINGER-POISSON SYS-
TEM INVOLVING BOTH SINGULAR AND GENERAL NONLINEA-
RITIES

Now, we look at our second problem, discussing the existence of positive solutions
to the following Schrödinger-Poisson system,

−∆u− ϕu2∗−2 = λ
uγ in Ω,

−∆ϕ = f(u) in Ω,
u > 0 in Ω,
u = ϕ = 0 on ∂Ω.

(P2)

where λ > 0 and γ ∈ (0, 1) are real parameters. As we said, we will consider f to be
continuous and satisfying the critical growth condition

0 ≤ f(s)s ≤ L|s|2∗
, L > 0. (3.1)

The presence of a singularity brings obvious complications as to the possibility of a
blow up in certain points in Ω. In addition, there is also the difficulty of treating critical
growth, since such terms cause the lack of compactness of the spaces dealt with and thus
hinder, as we have seen in Chapter 1, the use of variational methods. The use of the
non-variational Galerkin Method helps again avoid this problem with the critical growth
and at the same time brings no insurmountable difficulties to dealing with the singular
term. We do this while still keeping the nonlinearity f in the second equation of (P2) quite
general and not asking additional conditions like, for example, the Ambrosetti-Rabinowitz
growth condition, commonly adopted in elliptic problems.

We restate our main result, already introduced in Chapter 1.

Theorem 3.0.1. If f : [0,∞) −→ R is a continuous function satisfying the growth
condition (3.1). Then there exists Λ > 0 such that, for every 0 < λ < Λ, problem (P2) has
a pair of solutions uλ, ϕλ ∈ H1

0 (Ω) ∩W 2,p(Ω), with p = 2∗

2∗−1 .

We notice the striking similarity between the conditions for which our result and
Theorems 1.4.4 hold. It is, therefore, safe to say that our findings pose as a generalization
of theirs.

3.1 PRELIMINARY RESULTS AND AUXILIARY SOLUTIONS

Firstly, we present the comparison result due to Ambrosetti, Brezis and Cerami
(for the proof, we refer the reader to [34, Lemma 3.3.]), which will play an important role
in the proof of our main theorem.
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Lemma 3.1.1 (Ambrosetti, Brézis and Cerami). Consider g : R → R a continuous
function satisfying t−1g(t) decreasing for t > 0. If u1, u2 ∈ C2(Ω) are strong sub and
supersolution, respectively, of the problem below

−∆u = g(u), x ∈ Ω,
u > 0, x ∈ Ω,
u = 0, x ∈ ∂Ω,

(3.2)

meaning that we have


−∆u1 ≤ g(u1), x ∈ Ω,

u1 > 0, x ∈ Ω,
u1 = 0, x ∈ ∂Ω,

(3.3)


−∆u2 ≥ g(u2), x ∈ Ω,

u2 > 0, x ∈ Ω,
u2 = 0, x ∈ ∂Ω.

(3.4)

Then u2 ≥ u1, x ∈ Ω.

In the final part of the present chapter, we shall also need the following result,
which we shall only enunciate here.

Theorem 3.1.1. Suppose that p ∈ (1,+∞) and that (fn)n∈N is a sequence of functions in
Lp(Ω) such that (|fn|p)n∈N is a bounded sequence of numbers. If fn → f a.e. in Ω, then
fn ⇀ f in Lp(Ω).

Proof. See [37, Theorem 13.44].

Let us now turn our attention back to our main problem. Evidently, the singularity
present in the first equation of (P2) elevates the complexity of the problem in question.
It is what motivates the condition u(x) > 0 for every x ∈ Ω and is one of the principal
reasons we must first solve a sequence of auxiliary equations. For each k ∈ N, we shall
consider first the following

−∆u− ϕu2∗−2 = λ
(u+ 1

k
)γ , x ∈ Ω,

−∆ϕ = fk(u), x ∈ Ω,
u > 0, x ∈ ∂Ω,

u = ϕ = 0, x ∈ ∂Ω,

(Pk)
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where fk is a sequence of auxiliary functions, given by

fk(s) =



−k[G(−k − 1
k
)−G(−k)], if s ≤ −k

−k[G(s− 1
k
)−G(s)], if − k ≤ s ≤ − 1

k

k2s[G(− 2
k
)−G(− 1

k
)], if − 1

k
≤ s ≤ 0

k2s[G( 2
k
)−G( 1

k
)], if 0 ≤ s ≤ 1

k

k[G(s+ 1
k
)−G(s)], if 1

k
≤ s ≤ k

k[G(k + 1
k
)−G(k)], if s ≥ k,

(3.5)

with G(s) =
∫ s

0 f(ξ)dξ. Here, not only the singularity, but also the allowed growth
condition for f , make it necessary to consider fk instead of f , the former having a much
higher regularity. More specifically, this sequence, for which we reference the reader to
[12] for a good example of its application, has the following properties. The proof of the
first lemma can be seen in [28].

Lemma 3.1.2. The sequence of auxiliary functions fk : R→ R given above is such that

1. sfk(s) ≥ 0 for s ∈ R, k ∈ N.

2. For all k ∈ N, there exists ck ∈ R such that |fk(t)− fk(s)| ≤ ck|t− s|, for s, t ∈ R.

3. fk −→ f uniformly in any bounded subset of R.

This result will prove to be crucial when we study the regularity of the solutions
we obtain. In addition, we can also state and demonstrate the following lemma about the
estimates of the sequence fk.

Lemma 3.1.3. The sequence of auxiliary functions fk defined above satisfies

1. ∀ k ∈ N, 0 ≤ s fk(s) ≤ L1|s|2
∗
, |s| ≥ 1

k
,

2. ∀ k ∈ N, 0 ≤ s fk(s) ≤ L2|s|2, |s| ≤ 1
k
,

where L1 and L2 are positive constants independent of k.

Proof. To prove this result, we must divide our considerations into different cases.

First Case: Consider −k ≤ s ≤ − 1
k
.

Using the mean value theorem, there exists ξ ∈ (s− 1
k
, s) such that

fk(s) = k(G(s)−G(s− 1
k

) = −k d
ds
G(ξ)1

k
= f(ξ),
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which proves that sfk(s) = sf(ξ) in this interval. Furthermore, since ξ < s and f(ξ) < 0,
we have

sfk(s) ≤ sf(ξ) ≤ ξf(ξ) ≤ L |ξ|2
∗

≤ L

∣∣∣∣s− 1
k

∣∣∣∣2∗

≤ L(|s|+ 1
k

)2∗

≤ L(2 |s|)2∗

≤ 22∗
L |s|2

∗
.

(3.6)

Second Case: Consider 1
k
≤ s ≤ k.

As before, there must exist ξ ∈ (s, s+ 1
k
) such that

fk(s) = k(G(s+ 1
k

)−G(s) = k
d

ds
G(ξ)1

k
= f(ξ),

proving that, again, sfk(s) = sf(ξ) in this interval. Now, given that s < ξ and f(ξ) > 0,
we have

sfk(s) ≤ sf(ξ) ≤ ξf(ξ) ≤ L |ξ|2
∗

≤ L

∣∣∣∣s+ 1
k

∣∣∣∣2∗

≤ 22∗
L |s|2

∗
.

(3.7)

Third Case: Consider s ≥ k.

In this case, we choose ξ ∈ (k, k + 1
k
) such that

fk(s) = k(G(k + 1
k

)−G(k) = k
d

ds
G(ξ)1

k
= f(ξ),

obtaining, again, sfk(s) = sf(ξ). Now, we can write

sfk(s) = s

ξ
ξf(ξ) ≤ |s|

|ξ|
L |ξ|2

∗
≤ L |s| |ξ|2

∗−1 .

Since ξ < k + 1
k
≤ s+ 1

k
, we obtain

sfk(s) ≤ L |s|
∣∣∣∣s+ 1

k

∣∣∣∣2∗−1

≤ L |s| 22∗−1 |s|2
∗−1

≤ 22∗−1L |s|2
∗
.

(3.8)

Fourth Case: Consider s ≤ −k.

This case is quite similar to the third one. Taking now ξ ∈ (k − 1
k
,−k) such that

fk(s) = k(G(k + 1
k

)−G(k) = k
d

ds
G(ξ)1

k
= f(ξ),
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we have one more time that sfk(s) = sf(ξ). By the same reasoning as before,

sfk(s) ≤ |s|
|ξ|
L |ξ|2

∗
≤ L |s| |ξ|2

∗−1 .

Since |ξ| < k + 1
k
≤ s+ 1

k
,

sfk(s) ≤ L |s|
∣∣∣∣s+ 1

k

∣∣∣∣2∗−1

≤ L |s| 22∗−1 |s|2
∗−1 ≤ 22∗−1L |s|2

∗
. (3.9)

With this, we finally conclude item (i), taking L1 to be 22∗
L. For item (ii), let us

look at the last case.

Fifth Case: Consider |s| ≤ 1
k
.

With the purpose of not dividing this proof into two more, very similar, cases, let
us consider s ≥ 0, leaving to the reader the evident generalization. There, we have

fk(s) = k2s[G(2
k

)−G(1
k

)]

and, again by the mean value theorem, there exists ξ ∈ ( 2
k
, 1

k
) such that

fk(s) = k2s[G(2
k

)−G(1
k

)] = k2s
d

ds
G(ξ)1

k
= ksf(ξ).

Now, we obtain

sfk(s) = ks2f(ξ) ≤ k
|s|2

|ξ|
L |ξ|2

∗
≤ kL |s|2 |ξ|2

∗−1 .

By the conditions on ξ,

sfk(s) ≤ kL |s|2
∣∣∣∣2k
∣∣∣∣2∗−1

= k−2∗
L22∗−1 |s|2 ≤ L22∗−1 |s|2 . (3.10)

By this, taking L2 to be 22∗−1L, we prove what was desired.

What we intend to do, eventually, is to prove the existence of the sequence (uk, ϕk),
solutions to each (Pk), and subsequently show that we can obtain a pair (uλ, ϕλ), the limit
of a subsequence of (uk, ϕk), which satisfies the condition for being solutions of the main
problem (P2). We remind that this last fact is characterized by the equalities∫

Ω
∇u∇ω dx−

∫
Ω
ϕu2∗−2ω dx− λ

∫
Ω

ω

uγ
dx = 0,∫

Ω
∇ϕ∇ω dx−

∫
Ω
f(u)ω dx = 0, ω ∈ H1

0 (Ω).

Remark 3.1.1. The regularity of each pair (uk, ϕk) is then an important factor to the
final result, as is their sign in Ω. This is also the reason we must consider first the auxiliary
functions fk. Their regularity implies quite directly the strong regularity of each solution
ϕk, which in turn does the same for uk, as we shall see ahead. Furthermore, it is also
known that even if each uk is strictly positive, the same might not be true for its limit u.
We will be able, nonetheless, to obtain the existence of an uniform lower bound for uk,
thus being able to achieve this goal.
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Therefore, we shall present in this section the regularity of each pair (uk, ϕk) of
weak solutions to the auxiliary problem (Pk). The existence of the limit (uλ, ϕλ) will be
already assumed and will be proven in further sections.

First, we obtain an estimate to the nonlinearity of the first auxiliary equation
(taking ϕ as a known function of x) by a subcritical growth in u, which will lead directly
to the regularity of uk. For each k ∈ N, we define

H(u, ϕ) = ϕu2∗−2 + λ

(u+ 1
k
)γ

and G(u, x) = H(u, ϕ(x)). The equation satisfied by uk is then −∆u = G(u, x). On the
other hand, we have the following estimate

|H(u, ϕk)| =
∣∣∣∣ϕku

2∗−2 + λ

(u+ 1
k
)γ

∣∣∣∣ ≤ |ϕk||u|2
∗−2 + λ

|u+ 1
k
|γ
≤ |ϕk||u|2

∗−2 + λkγ.

This is the fundamental inequality we must have to be able to apply standard
bootstrapping arguments and consequently show that uk, ϕk ∈ C2(Ω) for every k ∈ N. We
do as follows:

We notice first that each fk is a truncated function, being constant for |s| ≥ k,
meaning we have fk ∈ L∞(R), which in turn implies fk(uk) ∈ L∞(Ω) for every k (the fact
that they are not uniformly bound does not hinder our development, since we are fixing k).
By the second equation of (Pk) and standard results of regularity (see, for example, [38]),
we obtain ϕk ∈ W 2,r(Ω), for r > 1, and choosing r big enough we can obtain, through the
Sobolev-Morrey Embeddings, ϕk ∈ C0,α(Ω) for any α ∈ (0, 1]. In particular, ϕk ∈ L∞(Ω)
and therefore1

|H(u, ϕk)| ≤ |ϕk|∞|u|2
∗−2 + λkγ. (3.11)

We have seen that uk satisfies weakly the equation

−∆u = G(u, x),

where, by inequality (3.11), we have G(uk(·), ·) ∈ Ls(Ω), with s = 2∗

(2∗−2) . By known
arguments of standard elliptic regularity, we obtain uk ∈ W 2,s(Ω). We wish to show that
we can elevate this regularity to W 2,s′(Ω) such that 2s′ > N .

If 2s > N , we take s′ = s and there is nothing to be done.

If 2s ≤ N , we notice first that we can write

s = (1 + ϵ) 2∗

2∗ − 1 = (1 + ϵ) 2N
N + 2 .

1 Here we see the great advantage of dealing with fk first. With them, the regularity of the
auxiliary functions ϕk comes quite easily. Its boundness, caused by the boundness of each fk,
is also a crucial step in proving the regularity of uk.
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By the Sobolev-Morrey Embeddings, we can assert that uk ∈ Lp1(Ω), with

p1 = Ns

N − 2s,

which in turn leads to G(uk(·), ·) ∈ Ls1(Ω), s1 = p1
(2∗−2) . This shows that uk ∈ W 2,s1(Ω)

and to see that we elevated the regularity, we write

s1

s
= p1

2∗ = Ns

N − 2s
N − 2

2N = (1 + ϵ)(N − 2)
N − 2− 4ϵ > 1 + ϵ.

With this, we can check now the same conditions for s1. If 2s1 ≤ N , we can apply
again this argument of bootstrapping to obtain

u ∈ W 2,s2(Ω) , s2 = p2

(2∗ − 2) , p2 = Ns1

N − 2s1

and we have
s2

s1
= p1

2∗ = Ns1(N − 2s)
Ns(N − 2s1)

> (1 + ϵ) N − 2s
N − 2s1

> 1 + ϵ.

Within a finite number of times, we shall obtain uk ∈ W 2,s′(Ω), 2s′ > N .

Applying one more time the Sobolev-Morrey Embeddings, we will finally have
uk ∈ C0,β(Ω) for β ∈ (0, 1). We can equate β and α and this regularity will be then shared
by h(x) = H(u(.), ϕk(.)) and again by the Theory of Regularity, we obtain uk ∈ C2(Ω).

With that, fk(uk) is continuous up to the closure Ω and thus ϕk will also belong to
C2(Ω) due to the second auxiliary equation. This means that the pair (uk, ϕk) is actually
a strong solution to the problem (Pk). Additionally, the Sobolev-Morrey Embeddings will
also give us the relation between the two norms

∥u∥C0,λ(Ω) ≤ C ∥u∥W 2,s′ (Ω) .

We must, however, pay close attention to the fact that this does not give us a
uniform limitation on the C0,λ(Ω) norm of the sequence uk, since the function h, and
therefore the constant limiting ∥uk∥W 2,s′ (Ω), depend on the value of k.

Moreover, the regularity of the sequence (uk, ϕk) is not the final goal of this section.
As we have already mentioned, we need a uniform lower bound for uk to assert that its
limit uλ will be strictly positive in the entire domain and for that, we utilize Lemma 3.1.1.
It is easy to see that each uk will be a supersolution of the problem

−∆u = λ
(u+ 1

k
)γ , x ∈ Ω,

u > 0, x ∈ Ω,
u = 0, x ∈ ∂Ω,

(3.12)
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since
−∆uk = ϕk(uk)2∗−2 + λ

(uk + 1
k
)γ
≥ λ

(uk + 1
k
)γ

and since we can easily prove, using the same inequality and the Maximum Principles,
that uk > 0 for every k ∈ N. For a subsolution, we can use the eigenfunction φ1 of the
first eigenvalue of the Laplacian operator −∆. We know it to be smooth, strictly positive,
and bounded in Ω (the unfamiliar reader may look well spread references such as [3] to
convince themselves). Furthermore, for every δ > 0, w = δφ1 is easily seen to be another
solution to the eigenvalue problem with λ1 and it is such that |w|∞ = δ|φ1|∞. Thus, taking
δ satisfying

δ |φ1|∞ (δ|φ1|∞ + 1)γ ≤ λ

λ1
,

we shall obtain
−∆w = λ1w ≤

λ

(δ|φ1|∞ + 1
k
)γ
≤ λ

(w + 1
k
)γ
,

meaning w is the strictly positive subsolution we were looking for.

Applying Lemma 3.1.1 with g(s) = λ
(s+ 1

k
)γ , v1 = w and v2 = uk, we shall have

uk(x) ≥ δφ1(x) > 0 , x ∈ Ω , k ∈ N.

Supposing that there exist a pointwise limit uλ ∈ H1
0 (Ω) to the sequence (uk) as k →∞,

we then conclude that uλ ≥ δφ1 > 0 a.e. in Ω. This concludes the assertion that (uλ, ϕλ)
is a pair of solutions to problem (P2).

3.2 PROOF OF THEOREM 3.0.1

In this section we finally prove our main result. As mentioned in the last section,
we shall need to first prove the existence of solution for a sequence of auxiliary problems,
defined, for each k ∈ N, to be

−∆u− ϕu2∗−2 = λ
(u+ 1

k
)γ , x ∈ Ω,

−∆ϕ = fk(u), x ∈ Ω,
u > 0, x ∈ ∂Ω,

u = ϕ = 0, x ∈ ∂Ω,

(Pk)

fk being the auxiliary functions presented in Section 3.1.

To carry out the process of finding the solution to (P2), we must first look for a
solution to each equation (Pk). For that, we follow a analogous path as the one in the
preceding chapter. Let β = {e1, e2, . . . , en, . . . } be now a orthonormal basis of H1

0 (Ω) and
we define again the subspaces Vm = [e1, e2, . . . , em] of H1

0 (Ω) as being generated by the
first m vectors of β, for each m ∈ N, and equipped with the norm ∥u∥ =

(∫
Ω |∇u|

2 dx
) 1

2 ,
the same as the one for the whole space. Again, we can construct an isomorphism from
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Vm to Rm and, therefore, Vm × Vm will be isomorphic2 to R2m. That allows us to define
the function Φ : R2m −→ R2m whose coordinate functions are

Φ(ζ, ξ) = (F1(ζ, ξ), ..., Fm(ζ, ξ), G1(ζ, ξ), ..., Gm(ζ, ξ)) ,

Fj(ζ, ξ) =
∫

Ω
∇u∇ej dx−

∫
Ω
ϕ+(u+)2∗−2ej dx− λ

∫
Ω

ej

(u+ + 1
k
)γ
dx,

Gj(ζ, ξ) =
∫

Ω
∇ϕ∇ej dx−

∫
Ω
fk(u+)ej dx, j = 1, 2, . . . ,m,

where u =
∑m

i=1 ζiei and ϕ =
∑m

i=1 ξiei are, respectively, the functions in Vm related to
the elements ζ = (ζ1, ζ2, . . . , ζm) and ξ = (ξ1, ξ2, . . . , ξm) in Rm through the isomorphism
mentioned above.

Once more, we shall apply Lemma 2.0.1 to obtain weak solutions to each (Pk),
so the next step is to show that Φ satisfies its conditions. The continuity of Φ is quite
straightforward, so what remains to be done is to prove the following proposition.

Proposition 3.2.1. The function Φ : R2m → R2m defined above is continuous.

Proof. This demonstration goes along a similar path from Proposition 2.1.1, from which
we can even readily state the continuity of each component function Gj.3 Now, for Fj,
we need only prove that, if a sequence of pairs ((un, ϕn))n∈N ⊂ Vm × Vm converges in the
H1

0 (Ω)×H1
0 (Ω) norm to (u, ϕ), then∫

Ω
ϕn+(un+)2∗−2ej dx −→

∫
Ω
ϕ+(u+)2∗−2ej dx (3.13)

and ∫
Ω

ej

(un+ + 1
k
)γ
dx −→

∫
Ω

ej

(u+ + 1
k
)γ
dx. (3.14)

For that, let us see that∣∣ϕn+(un+)2∗−2ej

∣∣ ≤ 2∗ − 1
2∗ |ϕn+|

2∗
2∗−1 |un+|

2∗
(

2∗−2
2∗−1

)
+ 1

2∗ |ej|2
∗

and since 2∗ − 1 and 2∗−1
2∗−2 are conjugate exponents in the Holder sense,

∣∣ϕn+(un+)2∗−2ej

∣∣ ≤ 1
2∗ |ϕn+|2

∗
+ 2∗ − 2

2∗ |un+|2
∗

+ 1
2∗ |ej|2

∗
.

Now, by the continuous embedding H1
0 (Ω) ↪→ L2∗(Ω), the uniform boundness of ∥un∥

and ∥ϕn∥ implies the same uniform boundness for |un|2∗ and |ϕn|2∗ , that is, the uniform
boundness in L1(Ω) of |un|2

∗
and |ϕn|2

∗
.

2 We can consider here the “euclidean” norm in Vm × Vm, where ∥(u, v)∥ =
√
∥u∥2 + ∥v∥2, or

any equivalent norm in this space. We shall stick to this one, for convenience.
3 Notice that the functions fk in Proposition 2.1.1 is completely different from the ones we

consider now. Nevertheless, the important factor in our proofs are the estimates over each
function, which in this case is even stronger than in the last chapter, being bounded in L∞(Ω).



50

Meanwhile, ∣∣∣∣ ej

(un+ + 1
k
)γ

∣∣∣∣ ≤ kγ |ej| ,

meaning both sequences are bounded by functions in L1(Ω). Using the DCT, we obtain
(3.13) and (3.14).

Proposition 3.2.2. There exists a real number R > 0 such that, for ∥(ζ, ξ)∥ = R, we
have ⟨Φ(ζ, ξ), (ζ, ξ)⟩ ≥ 0.

Proof. By definition, we have

⟨Φ(ζ, ξ), (ζ, ξ)⟩ =
m∑

i=1

Fi(ζ, ξ)ζi +
m∑

i=1

Gi(ζ, ξ)ξi

=
m∑

i=1

(∫
Ω
∇u∇ei dx−

∫
Ω
ϕ+(u+)2∗−2ei dx− λ

∫
Ω

ei

(u+ + 1
k
)γ
dx

)
ζi

+
m∑

i=1

(∫
Ω
∇ϕ∇ei dx−

∫
Ω
fk(u+)ei dx

)
ξi

=
∫

Ω
∇u∇

(
m∑

i=1

eiζi

)
dx−

∫
Ω
ϕ+(u+)2∗−2

(
m∑

i=1

eiζi

)
dx

−λ
∫

Ω

(
∑m

i=1 eiζi)
(u+ + 1

k
)γ

dx+
∫

Ω
∇ϕ∇

(
m∑

i=1

eiξi

)
dx

−
∫

Ω
fk(u+)

(
m∑

i=1

eiζi

)
dx

=
∫

Ω
|∇u|2 dx−

∫
Ω
ϕ+(u+)2∗−1 dx− λ

∫
Ω

u

(u+ + 1
k
)γ
dx

+
∫

Ω
|∇ϕ|2 dx−

∫
Ω
fk(u+)ϕ dx.

Thus, we are left with

⟨Φ(ζ, ξ), (ζ, ξ)⟩ = ∥u∥2 + ∥ϕ∥2 −
∫

Ω
ϕ+(u+)2∗−1 dx

− λ
∫

Ω

u

(u+ + 1
k
)γ
dx−

∫
Ω
fk(u+)ϕ dx.

(3.15)

Using the fact that fk satisfies the conditions from Lemma 3.1.3 and defining

Ω+
k := {x ∈ Ω ; |u+(x)| ≥ 1/k}, (3.16)

Ω−
k := {x ∈ Ω ; |u+(x)| < 1/k}, (3.17)
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we have (noting that fk(s) is positive when s > 0)∫
Ω
fk(u+)ϕ dx ≤

∫
Ω+

k

L1 (u+)2∗−1ϕ dx+
∫

Ω−
k

L2 (u+)2ϕ dx

≤
∫

Ω
L1 (u+)2∗−1ϕ dx+ 1

k2

(∫
Ω−

k

L2
2 dx

)1/2

|ϕ|2

≤
∫

Ω
L1 (u+)2∗−1ϕ dx+ L′

2
k2 ∥ϕ∥ ,

(3.18)

from which we conclude that∫
Ω
ϕ+(u+)2∗−1 dx+

∫
Ω
ϕfk(u+) dx ≤

∫
Ω
ϕ+
(
(u+)2∗−1 + L1(u+)2∗−1) dx

+ L′
2

1
k2 ∥ϕ∥

≤ 2L′
1

∫
Ω
ϕ+(u+)2∗−1 dx+ L′

2
k2 ∥ϕ∥ ,

(3.19)

where we named L′
1 = max{L1, 1}. Now, we will use the Young Inequality, namely

ab ≤ 1
p
ap + 1

p′ b
p′
,

where p and p′ are conjugated Holder indices, to obtain an estimate of the form∫
Ω
ϕ+(u+)2∗−1 dx+

∫
Ω
ϕfk(u+) dx ≤ D1 ∥ϕ∥2∗

+D2 ∥u∥2∗
+ L2

k2 ∥ϕ∥ . (3.20)

For that, we choose p = 2∗

2∗−1 so that p′ = 2∗. With this, we have

|ϕ||u|2∗−1 ≤ 1
p′ |ϕ|

p′ + 1
p
|u|(2∗−1)p = 1

2∗ |ϕ|
2∗ + 2∗ − 1

2∗ |u|2∗
,

so that by the Sobolev Embedding Theorems and inequality (3.19), we obtain estimate
(3.20) as intended. Thus, the scalar product satisfies

⟨Φ(ζ, ξ), (ζ, ξ)⟩ ≥ ∥u∥2 + ∥ϕ∥2 −D2 ∥u∥2∗
−D1 ∥ϕ∥2∗

− L2

k2 ∥ϕ∥ − λC1(1 + ∥u∥),

which we can rewrite as

⟨Φ(ζ, ξ), (ζ, ξ)⟩ ≥ ||(ζ, ξ)||2 −D2∥ζ∥2∗ −D1∥ξ∥2∗ − L2

k2 ∥ξ∥ − λC1(1 + ∥(ζ, ξ)∥),

where we used
||ζ|| ≤

√
||ζ||2 + ||ξ||2 = ∥(ζ, ξ)∥.

Thus, choosing R such that

R2 − (D1 +D2)R2∗
> 0,
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which is equivalent to
R2∗−2 <

1
D1 +D2

,

we can take

λ < Λ = R2 − (D1 +D2)R2∗−2

C1(1 + t0)
and k2 >

L2R

R2 − (D1 +D2)R2∗−2 − λC1(1 + t0)

and, for all (ζ, ξ) such that ∥(ζ, ξ)∥ = R, we have

⟨Φ(ζ, ξ), (ζ, ξ)⟩ > 0.

We have then proved the necessary conditions for us to use Lemma 2.0.1, which
gives us a pair of sequences of functions (um, ϕm)m∈N, both composed by elements of each
Vm, satisfying∫

Ω
∇um∇ej dx−

∫
Ω
ϕm+(um+)2∗−2ej dx− λ

∫
Ω

ej

(um+ + 1
k
)γ
dx = 0,

∫
Ω
∇ϕm∇ej dx−

∫
Ω
fk(um+)ej dx = 0,

for j = 1, 2, ...,m. Because we are dealing with basis elements, we can expand this to the
whole space Vm, so that∫

Ω
∇um∇ω dx−

∫
Ω
ϕm+(um+)2∗−2ω dx− λ

∫
Ω

ω

(um+ + 1
k
)γ
dx = 0, (3.21)

∫
Ω
∇ϕm∇ω dx−

∫
Ω
f(um+)ω dx = 0, ω ∈ Vm. (3.22)

It is important to notice that both sequences satisfy ∥um∥ , ∥ϕm∥ ≤ R and that
this limiting constant does not depend on the index m. We have obtained then a pair of
sequences with its terms limited, on H1

0 (Ω), by a common constant. By known results,
namely the Sobolev Embedding Theorems, we can extract a pair of subsequences, which
we still denote by (um), (ϕm), and a pair of functions u, ϕ ∈ H1

0 (Ω) such that

um ⇀ u in H1
0 (Ω) and um → u in Ls(Ω),

ϕm ⇀ ϕ in H1
0 (Ω) and ϕm → ϕ in Ls(Ω), s ∈ [1, 2∗).

(3.23)

Thus, letting m→∞ in equations (3.21) and (3.22) and keeping ω in a particular
fixed Vl space, we have∫

Ω
ϕm+(um+)2∗−2ω dx −→

∫
Ω
ϕ+(u+)2∗−2ω dx,

∫
Ω

ω

(um+ + 1
k
)γ
dx −→

∫
Ω

ω

(u+ + 1
k
)γ
dx,
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∫
Ω
fk(um+)ω dx −→

∫
Ω
fk(u+)ω dx,

where the last one can be readily verified by the strong regularity and boundness of each
fk. Using these convergences, we can rewrite∫

Ω
∇u∇ω dx−

∫
Ω
ϕ+(u+)2∗−2ω dx− λ

∫
Ω

ω

(u+ + 1
k
)γ
dx = 0,∫

Ω
∇ϕ∇ω dx−

∫
Ω
fk(u+)ω dx = 0, ω ∈ Vl.

Since here l ∈ N is arbitrary, we can pass the limit l→∞ and achieve∫
Ω
∇u∇ω dx−

∫
Ω
ϕ+(u+)2∗−2ω dx− λ

∫
Ω

ω

(u+ + 1
k
)γ
dx = 0, (3.24)

∫
Ω
∇ϕ∇ω dx−

∫
Ω
fk(u+)ω dx = 0, ω ∈ H1

0 (Ω). (3.25)

Here we used the fact that the Vl spaces are dense in H1
0 (Ω), which permits us to

approximate any test function by elements of Vl.

At last, we can show that u ≥ 0 for every x ∈ Ω. This is evident, since taking
ω = u− = max{−u, 0} in (3.24) leads to

−∥u−∥2 =
∫

Ω
∇u∇(u−) dx =

∫
Ω
ϕ+(u+)2∗−2(u−) dx+ λ

∫
Ω

u−

(u+ + 1
k
)γ
dx ≥ 0,

showing that u = u+. Furthermore, the same argument for (3.25), together with the fact
that f satisfies condition (3.1), shows that

−∥ϕ−∥2 =
∫

Ω
fk(u)ϕ− dx ≥ 0,

which implies that ϕ = ϕ+ and the functions u, ϕ will then be a pair of weak solutions to
(Pk). We will from now on denote them by uk and ϕk, to reassure their dependence on the
parameter k in the auxiliary system.

Now, the final step to prove Theorem 3.0.1 is to argue that the sequences uk, ϕk

tend to functions which satisfy the conditions of weak solutions to problem (P2). For that,
let us notice that, because of the weak convergences in the space H1

0 (Ω), we have

∥uk∥ ≤ lim inf
m→∞

∥um∥ ≤ R (3.26)

and the same applies to each function ϕk. Again, the limiting constant does not depend
on the index k of the functions of the sequence. That means we are left with new bounded
sequences in H1

0 (Ω) and once more we can affirm that there exists functions uλ, ϕλ ∈ H1
0 (Ω)

such that, up to a subsequence,

uk ⇀ uλ in H1
0 (Ω) and uk → uλ in Ls(Ω),

ϕk ⇀ ϕλ in H1
0 (Ω) and ϕk → ϕλ in Ls(Ω), s ∈ [1, 2∗).

(3.27)
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We want to show that, letting k →∞, we can assert the following convergences∫
Ω
ϕk(uk)2∗−2ω dx −→

∫
Ω
ϕλ(uλ)2∗−2ω dx, (3.28)

∫
Ω
fk(uk)ω dx −→

∫
Ω
f(uλ)ω dx. (3.29)

For that, let us show first that ϕk(uk)2∗−2 and fk(uk) are both bounded sequences
in Lp(Ω), with p = 2∗

2∗−1 . For the latter, it is an easy task because, by condition (3.1),∫
Ω
|fk(uk)|p dx ≤

∫
Ω
|uk|(2

∗−1)p dx = |uk|2
∗

L2∗ (Ω) ≤ CR2∗
.

For (3.28) we only need to make use one more time of the Young Inequality. Now,
we can choose q = 2∗ − 1, which gives q′ = 2∗−1

2∗−2 and pq′(2∗ − 2) = 2∗. Therefore,∫
Ω

∣∣ϕku
2∗−2
k

∣∣p dx ≤ 1
2∗ − 1

∫
Ω
|ϕk|2

∗
dx+ 2∗ − 2

2∗ − 1

∫
Ω
|uk|2

∗
dx

≤ 1
2∗ − 1 ∥ϕk∥2∗

+ 2∗ − 2
2∗ − 1 ∥uk∥2∗

.

(3.30)

Now, by the Lp(Ω) convergence in (3.27), we have ϕk(uk)2∗−2 → ϕλu
2∗−2
λ a.e. in

Ω. In the same manner, using that f is a continuous function, we have f(uk) → f(u)
a.e. in Ω. By the limitations of

∣∣ϕku
2∗−2
k

∣∣
p

and |f(uj)|p, using Theorem 3.1.1, we obtain
ϕk(uk)2∗−2 ⇀ ϕλu

2∗−2
λ and f(uk) ⇀ f(uλ) in Lp(Ω).

On the other hand, being p and 2∗ conjugate indices in the Holder sense, meaning
that 2∗ + p = 2∗p, the integral

∫
Ω vω dx is finite for v ∈ Lp(Ω), since∣∣∣∣∫

Ω
vw dx

∣∣∣∣ = |v w|1 ≤ |v|p |w|2∗ < +∞,

where we used the Holder inequality. Therefore, we can define the functional J(v) =∫
Ω vw dx for every function v ∈ H1

0 (Ω). The weak convergences we have just obtained
imply then (3.28) and (3.29).

As for the limit of the sequence accompanying λ, we have the following: By the
developments of Section 3.1, each uk will be limited from below by δφ1 and, by the
Hardy-Sobolev Inequality (see Appendix), we have ω

(φ1)γ ∈ L1(Ω), which permits us to use
the DCT to conclude that ∫

Ω

ω

(uk + 1
k
)γ
dx −→

∫
Ω

ω

uγ
λ

dx,

since the convergence a.e. of the sequence inside the integral is straightforward. From this,
we finally obtain ∫

Ω
∇uλ∇ω dx−

∫
Ω
ϕλ(uλ)2∗−2ω dx− λ

∫
Ω

ω

uγ
λ

dx = 0,
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∫
Ω
∇ϕλ∇ω dx−

∫
Ω
f(uλ)ω dx = 0, ω ∈ H1

0 (Ω).

The pair (uλ, ϕλ) then satisfies the equations necessary for being a pair of weak
solutions of the main problem (P2). Since the fact that uλ > 0 was already proven in
Section 3.1, we conclude the assertion that (uλ, ϕλ) is a pair of solutions to problem (P2)
and Theorem 3.0.1 is proven.
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4 GENERALIZED SCHRODINGER-POISSON SYSTEM WITH THE
N-LAPLACIAN OPERATOR AND CRITICAL EXPONENTIAL
GROWTH

Finally, we treat in this chapter our last proposed problem, namely
−∆Nu− ϕf(u)

u
= λ

uγ in Ω,
−∆Nϕ = f(u) in Ω,
u > 0 in Ω,
u = ϕ = 0 on ∂Ω.

(P3)

We remind the reader that we are imposing over the function f the following exponential
critical growth

0 ≤ f(s)s ≤ L|s|r+1 exp{αs
N

N−1}, L, α > 0, r > N − 1, (4.1)

inspired by the Trudinger-Moser inequality (1.10), and that the results we have proven
are the following

Theorem 4.0.1. If f : [0,∞) −→ R is a continuous function satisfying the growth
condition (4.1). Then there exists Λ > 0 such that, for every 0 < λ < Λ, problem (P3) has
a solution pair uλ, ϕλ ∈ W 1,N

0 (Ω).

Meanwhile, treating the alternative problem, where f is of exponential form,
−∆Nu+ ϕur−1 exp{αuN ′} = λ

uγ in Ω,
−∆Nϕ = ur exp{αuN ′} in Ω,
u > 0 in Ω,
u = ϕ = 0 on ∂Ω,

(P4)

we have

Theorem 4.0.2. Let us suppose α > 0 arbitrary and r such that

(γ + rN ′ − 1)
(

1− γ
N − 1

)
> 1.

Then there exists Λ > 0 such that, for every 0 < λ < Λ, problem (P4) has a solution
pair uλ, ϕλ ∈ C1

0(Ω). If α = 0, the problem (P4) has a unique positive solution for every
0 < λ < Λ.

4.1 PRELIMINARY RESULTS

We have seen in both preceding chapters how important the Fundamental Lemma
is to the application of the Galerkin Method. It has, however, an important restriction
which we shall need to remove here. Indeed, we see that in the statement of Lemma 2.0.1,
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the sphere where we find that ⟨h(α), α⟩ ≥ 0 must be generated by the norm arising from
this inner product, that is, the euclidean norm in RN . Results analogous to Propositions
2.1.1 and 3.2.2, concerning Problem (P3), nonetheless, will enforce us to use a different
sphere, formed by an alternative norm in the same space.

This improvement was achieved in [39]. In the following hypothesis, | · |e =
√
⟨·, ·⟩

is the Euclidean norm on RN and | · |d a general norm.

Lemma 4.1.1. Let h : (RN , | · |d) −→ (RN , | · |d) be a continuous function such that
⟨h(α), α⟩ ≥ 0 for every α ∈ RN with |α|d = R, for some R > 0. Then there exists an
element z ∈ Bd

R(0) = {x ∈ RN ; |x|d ≤ R} such that h(z) = 0.

Proof. Firstly, we know there must exist a constant c > 0 such that

|x|d ≤ c |x|e , for all x ∈ RN . (4.2)

Now, let us suppose, by contradiction, that F (x) ̸= 0, for all x ∈ Bd
R(0). We define

f : (RN , | · |d) −→ (RN , | · |d) by

f(x) = − R

|h(x)|d
h(x),

which, in particular, maps continuously Bd
R(0) into itself. By Brouwer’s fixed point theorem,

Theorem 2.0.4, there must exist a z ∈ Bd
R(0) such that f(z) = z, that is, |x|d = R.

Thus, by hypothesis and using (4.2),

0 < R2 ≤ c ⟨z, z⟩ = c ⟨f(z), z⟩ = −c R

|h(x)|d
⟨h(z), z⟩ ≤ 0.

This is a contradiction, which concludes our proof.

It is worthwhile to reassure here the importance of this result. In the methods
seen here and throughout several other papers, we are often dealing with Banach spaces,
such as W 1,N

0 (Ω), where the lack of orthogonality might bring up several problems. The
freedom of choice we have with the norm in Lemma 4.1.1 is an efficient way for avoiding
such problems.

Following this first result, let us define a property satisfied by the N-Laplacian
operator which will be important later.

Definition 4.1.1. If X is a reflexive Banach space and V : X → X∗, we say that V is of
type (S+) if, for every sequence (xn)n∈N ⊂ X satisfying xn ⇀ x and1

lim sup
n→+∞

⟨V (xn), xn − x⟩ ≤ 0,

we obtain xn → x in X.
1 We use here the notation that ⟨w, u⟩ symbolizes the action of a dual vector w ∈ X∗ over some

element u ∈ X. It should be clear the moments we use this notation, that should not be
confused with the exact notion of the inner product over a vector space.
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Now, we can take the map V : W 1,N
0 (Ω)→ (W 1,N

0 (Ω))∗ given by

⟨V (u), v⟩ =
∫

Ω
|∇u|N−2∇u∇v dx ∀ u, v ∈ W 1,N

0 (Ω).

It can be shown that V defined in this way is in fact of type (S+). In that way, we say
that the −∆N operator has the (S+)-property.

We now dedicate the rest of this section of preliminary results to stating some
regularity theorems, which will be quite important later in this work. First, we cite a
famous result by Ladyzhenskaya and Ural’tseva, present in their great and accomplished
work [40]. Their version contemplates general operators other than the N-Laplacian, but
we shall write here only the particular case for simplification.

Theorem 4.1.1. Let u ∈ W 1,m(Ω) ∩ Lq(Ω), m ≤ N and q ≥ Nm
N−m

, be a weak solution of
the problem {

−∆Nu+ a(x, u,∇u) = 0, x ∈ Ω
u = 0, x ∈ ∂Ω,

(4.3)

with a : Ω×R×RN −→ R satisfying

(sign u)a(x, u, p) ≤ (1 + |u|α1)ϕ2(x) + (1 + |u|α2)ϕ2(x)|p|m−ϵ (4.4)

for ϵ, αi, ϕi such that

1. N
N+q
≤ ϵ ≤ m;

2. ϕi ∈ Lri(Ω), i = 1, 2,
r1 >

N

m
; r2 >

N

ϵ
;

3. 0 ≤ α1 < mN+q
N
− 1− q

r1
,

0 ≤ α2 < ϵN+q
N
− 1− q

r2
.

Suppose further that supx∈∂Ω |u(x)| = M0 < +∞. Then, maxΩ |u| is bounded by an
expression in terms of |u|Lq(Ω),M0, ϵ, αi, |ϕ|Lri (Ω).

The next result is due to [41] and gives a strong regularity for a bounded solution
to elliptic problems involving the N-Laplacian.

Theorem 4.1.2. Let α,Λ,M0 be positive constants with α ≤ 1, Φ be a nonnegative
constant and Ω ⊂ Rn be a bounded domain with C1,α boundary. Consider the problem{

−∆Nu+B(x, u,∇u) = 0, x ∈ Ω
u = ϕ, x ∈ ∂Ω,

(4.5)

with B satisfying
|B(x, z, p)| ≤ Λ(1 + |p|)m+2,
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for all (x, z, p) ∈ ∂Ω× [−M0,M0]×Rn. If ϕ ∈ C1,α(Ω) is such that |ϕ|1+α ≤ Φ and if u
is a bounded weak solution of the Dirichlet problem (4.5), with |u| ≤M0 in Ω, then there
is a positive constant β = β(α,Λ,m, n) such that u ∈ C1,β(Ω). Moreover,

|u|1+β ≤ C(α,Λ,m, n,M0,Φ,Ω).

The last regularity result appears in [42] and will be important to demonstrate the
positiveness of our auxiliary solutions.

Theorem 4.1.3. Consider the differential inequality

−∆Nu+B(x, u,∇u) ≤ 0 (4.6)

in a domain Ω ⊂ Rn. If it holds that

(I1) B(x, z, p) ≥ −κΦ(|p|)− f(z),
(I2) f(0) = 0 and f is non-decreasing on some interval (0, δ), δ > 0,

then the Strong Maximum Principle is valid, meaning that for a non-negative classical
solution u of (4.6), if u(x) = 0 for some x ∈ Ω, then u ≡ 0.

Lastly, we present a comparison result for the N-Laplacian operator, which will
be crucial for the proof of the positiveness of the main solution. Recall first that by a
subsolution of the problem {

−∆Nv = g(v), x ∈ Ω
v = 0, x ∈ ∂Ω,

(4.7)

we mean v1 ∈ W 1,N
0 (Ω) such that v1 ≥ 0 a.e. on ∂Ω and∫

Ω
|∇v1|p−1∇v1∇ω dx ≤

∫
Ω
g(v1)ω dx , ∀ ω ∈ W 1,N

0 (Ω) with ω ≥ 0 a.e. in Ω.

Similarly, v2 is a supersolution of (4.7) if v2 ≥ 0 a.e. on ∂Ω and the reverse
inequality above is satisfied, again for ω ≥ 0 a.e. in Ω. With this, we state the following
lemma, which is again a particular case of a more general result (see [43], where it is
considered a problem with the (p,q)-Laplacian operator).

Theorem 4.1.4. Consider g : R→ R a continuous function satisfying t1−Ng(t) decreasing
for t > 0. If u1, u2 are positive sub and supersolution, respectively, of (4.7), ui ∈
L∞(Ω) ∩ C1,α(Ω) for some α ∈ (0, 1), ∆Nui ∈ L∞(Ω) and ui/uj ∈ L∞(Ω) for i, j = 1, 2,
then u2 ≥ u1 in Ω.
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4.2 AUXILIARY PROBLEMS AND REGULARITY OF THE WEAK SOLUTIONS

In the same way as Chapter 3, Problem (P3) possesses a singularity in its first
equation and, additionally, we now ask that f grows at most exponentially. Like before,
these aspects will force us to solve, first, a sequence of auxiliary equations in which we
substitute f by more regular (and more importantly, bounded) functions. More specifically,
for each k ∈ N, we shall consider the following system

−∆Nu− ϕ fk(u)
(u+ 1

k
) = λ

(u+ 1
k

)γ , x ∈ Ω,
−∆Nϕ = fk(u), x ∈ Ω,

u > 0, x ∈ ∂Ω,
u = ϕ = 0, x ∈ ∂Ω,

(Pk)

where fk is the same Strauss sequence encountered in (3.5). They are given - we recall -
by

fk(s) =



−k[G(−k − 1
k
)−G(−k)], if s ≤ −k

−k[G(s− 1
k
)−G(s)], if − k ≤ s ≤ − 1

k

k2s[G(− 2
k
)−G(− 1

k
)], if − 1

k
≤ s ≤ 0

k2s[G( 2
k
)−G( 1

k
)], if 0 ≤ s ≤ 1

k

k[G(s+ 1
k
)−G(s)], if 1

k
≤ s ≤ k

k[G(k + 1
k
)−G(k)], if s ≥ k,

(4.8)

with G(s) =
∫ s

0 f(ξ)dξ. Another fact we can recall from Chapter 3 is Lemma 3.1.2, which
states conclusions of regularity and convergence for fk. Even further, we can adapt our
proof of Lemma 3.1.3, found in the same chapter, now that f satisfies (4.1). For an outline
of the proof of this adapted result, see [39].

Lemma 4.2.1. The sequence of auxiliary functions fk defined above satisfies

1. ∀ k ∈ N, 0 ≤ s fk(s) ≤ C1|s|r+1 exp{2N ′
αsN ′}, |s| ≥ 1

k
,

2. ∀ k ∈ N, 0 ≤ s fk(s) ≤ C2|s|2 exp{2N ′
αsN ′}, |s| ≤ 1

k
,

with C1, C2 being two positive constants independent of the parameter k.

What we intend to do, eventually, is to prove the existence of the sequence (uk, ϕk),
solutions to each (Pk), and subsequently show that we can obtain a pair (uλ, ϕλ), the limit
of a subsequence of (uk, ϕk), which satisfies the condition for being weak solutions of the
main problem (P3). We remind that this last fact is characterized by the equalities∫

Ω
|∇N−2u|∇u∇ω dx−

∫
Ω
ϕ
f(u)
u

ω dx− λ
∫

Ω

ω

uγ
dx = 0,

∫
Ω
|∇N−2ϕ|∇ϕ∇ω dx−

∫
Ω
f(u)ω dx = 0, ω ∈ W 1,N

0 (Ω).
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The regularity of each pair (uk, ϕk) is then a crucial factor to the final result, as
is their sign in Ω. This is also the reason we must consider first the auxiliary functions
fk. Their regularity implies quite directly the strong regularity of each solution ϕk, which
in turn does the same for uk, as we shall see ahead. Furthermore, it is known that even
though each uk is strictly positive, the same might not be said for its limit u. We will be
able, nonetheless, to obtain the existence of a uniform lower bound for uk, which easily
translates to a lower bound of its limit.

Therefore, we shall present in this section the regularity of each pair (uk, ϕk) of
weak solutions to the auxiliary problem (Pk). The existence of the limits (uλ, ϕλ), here
only required to be a.e. limits, will be already assumed and we will prove it in further
sections.

Proposition 4.2.1. If (uk, ϕk) is a pair of non-negative weak solutions of the auxiliary
problem (Pk), then it is a pair of classical solutions. Furthermore, there exists a strictly
positive lower bound w ∈ L∞(Ω) for the sequence uk, i. e., w is such that

uk ≥ w > 0 , ∀ k ∈ N.

Proof. Firstly, we must refer to Theorem 4.1.1 to show that ϕk ∈ L∞(Ω). We notice the
importance, here, of using the auxiliary functions fk instead of f , which does not satisfy
the proper conditions for the application of Theorem 4.1.1. Next, using this, we can also
induce the following estimate for the nonlinearity of the first equation

∣∣∣∣ϕk
fk(uk)

(uk + 1
k
)

+ λ

(uk + 1
k
)γ

∣∣∣∣ ≤ |ϕk|∞
∣∣∣∣fk(uk)
uk

∣∣∣∣+ λkγ ≤ ck|ϕk|∞ + λkγ.

Then, the same theorem is again applicable and gives us uk ∈ L∞(Ω). For both of this
functions, we can now apply Theorem 4.1.2 to ensure that ϕk, uk ∈ C1,β(Ω) for some
β ∈ (0, 1) (the indexes may be different at first, but we remember we can always consider
the smaller of the two). At last, Theorem 4.1.3 states that we can apply the strong
maximum principles for both equations and thus, together with the results ϕk, uk ≥ 0
and ϕk, uk ̸= 0, which we have already verified, gives us ϕk, uk > 0 in Ω. We have, finally,
obtained that uk, ϕk are classical solutions to (Pk).

Moreover, the regularity of the sequence (uk, ϕk) is not the final goal of this section.
As we have already mentioned, we need a uniform lower bound for uk to assert that its limit
uλ will be strictly positive in the entire domain and for that, we utilizes Theorem 4.1.4.
It is easy to notice that each uk will be a supersolution of the problem (4.7) considering
g(s) = λ

(s+ 1
k

)γ , since

−∆Nuk = ϕk(uk)2∗−2 + λ

(uk + 1
k
)γ
≥ λ

(uk + 1
k
)γ
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and we have just proven that uk > 0 in Ω. For a subsolution, we use the eigenfunction
of the first eigenvalue of the Laplacian operator −∆. We know it to be smooth, strictly
positive, and bounded in Ω. Not only that, but we can also obtain a constant B > 0 such
that |∆Nφ1| ≤ B in Ω. Furthermore, for every δ > 0, we have

−∆N(δφ1) = −δN−1∆Nφ1 ≤ δN−1B

and if we denote by w = δφ1, then w will be such that |w|∞ = δ|φ1|∞. Thus, taking δ
satisfying

δN−1B(δ|φ1|∞ + 1)γ ≤ λ,

we shall obtain
−∆Nw = δN−1B ≤ λ

(δ|φ1|∞ + 1
k
)γ
≤ λ

(w + 1
k
)γ
,

meaning w is the strictly positive subsolution we were looking for. We only need now
to prove that w and uk satisfy the conditions necessary to apply Theorem 4.1.4. We
have already proved them to be in L∞(Ω) ∩ C1,β(Ω) and this implies quite directly in
∆Nw,∆Nuk ∈ L∞(Ω).

What is left then for us to verify is that uk/w,w/uk ∈ L∞(Ω). For any compact
contained in Ω, this fact is evident since both are positive continuous functions. By that,
we need to show now that, when x→ ∂Ω (assuming, of course, x ∈ Ω), we have

max
{

lim sup
x→∂Ω

uk

w
, lim sup

x→∂Ω

w

uk

}
< +∞ (4.9)

and for that, we apply a boundary point lemma. This result can be seen in [42] and
assumes the same conditions as Theorem 4.1.3, so that we have no problems to apply the
result. It then states that using the Hopf boundary point lemma, we obtain

∂uk

∂ν
(x0) < 0 , ∂w

∂ν
(x0) < 0 , x0 ∈ ∂Ω, (4.10)

where ν is the exterior normal unit vector to ∂Ω. Thus, both expressions in (4.10), together
with l’Hôpital’s theorem, imply condition (4.9). Finally, we have achieved all of Theorem
4.1.4 conditions, and using it we obtain that uk ≥ w > 0 for every k ∈ N.

From this, if uk → uλ a.e. in Ω, then we can conclude that uλ > 0 in Ω.

4.3 PROOF OF THEOREM 4.0.1

In this section, we finally prove our main result. As mentioned in the last section,
we shall need to first prove the existence of solution for a sequence of auxiliary problems,
defined, for each k ∈ N, to be

−∆Nu− ϕ fk(u)
(u+ 1

k
) = λ

(u+ 1
k

)γ , x ∈ Ω,
−∆Nϕ = fk(u), x ∈ Ω,

u > 0, x ∈ ∂Ω,
u = ϕ = 0, x ∈ ∂Ω,

(Pk)
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fk being the auxiliary functions presented in Section 4.2.

Only after obtaining proper solutions to (Pk) will we be able to find a solution
pair to (P3). For that, we shall take the limit of these auxiliary solutions and prove
both the convergence and the affirmation that their limit satisfies (P3). As is the case
for the application of the Galerkin method, we start by taking a Schauder basis B =
{e1, e2, . . . , en, . . . } of W 1,N

0 (Ω) and with it we define the subspaces Vm = [e1, e2, . . . , em] of
W 1,N

0 (Ω) spanned by the first m vectors of B. Let us cite more explicitly the isomorphism
between Rm and Vm. Again we shall work with the Cartesian space Vm × Vm. For some
(ξ, ζ) = (ξ1, · · · , ξm, ζ1, · · · , ζm) ∈ R2m, the quantity

|(ξ, ζ)|m =

∣∣∣∣∣
m∑

j=1

ξjej

∣∣∣∣∣
N

W 1,N
0 (Ω)

+
∣∣∣∣∣

m∑
j=1

ζjej

∣∣∣∣∣
N

W 1,N
0 (Ω)

1/N

is a norm in R2m, which can be directly sen from the properties of the norm |·|W 1,N
0 (Ω),

and thus equivalent to the euclidean norm in the same space. In this manner, we identify
the spaces Vm × Vm and R2m, using the equivalence

(ξ, ζ) = (ξ1, · · · , ξm, ζ1, · · · , ζm) ∈ R2m ←→ (u, ϕ) =
(

m∑
j=1

ξjej,
m∑

j=1

ζjej

)
∈ Vm.

We are thus in position to define the function Φ : R2m −→ R2m whose coordinate
functions are

Φ(ζ, ξ) = (F1(ζ, ξ), ..., Fm(ζ, ξ), G1(ζ, ξ), ..., Gm(ζ, ξ)) ,

Fj(ζ, ξ) =
∫

Ω
|∇u|N−2∇u∇ej dx−

∫
Ω
ϕ+

fk(u+)
(u+ 1

k
)
dx− λ

∫
Ω

ej

(u+ + 1
k
)γ
dx,

Gj(ζ, ξ) =
∫

Ω
|∇ϕ|N−2∇ϕ∇ej dx−

∫
Ω
f(u+)ej dx,

where j = 1, 2, . . . ,m, u =
∑m

i=1 ζiei and ϕ =
∑m

i=1 ξiei are the functions in Vm related to
the elements ζ = (ζ1, ζ2, . . . , ζm) and ξ = (ξ1, ξ2, . . . , ξm) in Rm through the isomorphism
mentioned above.

To get the desired results, we shall also use Lemma 4.1.1, so our next step is to
show that Φ satisfies its conditions. The continuity of Φ is quite straightforward, meaning
we only need to prove the following proposition.

Proposition 4.3.1. There exists a real number ρ > 0 and a norm | · |d such that, for
|(ζ, ξ)|d = ρ, we have ⟨Φ(ζ, ξ), (ζ, ξ)⟩ ≥ 0.
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Proof. By definition, we have

⟨Φ(ζ, ξ), (ζ, ξ)⟩ =
m∑

i=1

Fi(ζ, ξ)ζi +
m∑

i=1

Gi(ζ, ξ)ξi

=
m∑

i=1

(∫
Ω
|∇u|N−2∇u∇ei dx

−
∫

Ω
ϕ+

fk(u+)
(u+ 1

k
)
ej dx− λ

∫
Ω

ej

(u+ + 1
k
)γ
dx

)
ζi

+
m∑

i=1

(∫
Ω
|∇ϕ|N−2∇ϕ∇ei dx−

∫
Ω
fk(u+)ei dx

)
ξi

=
∫

Ω
|∇u|N−2∇u∇

(
m∑

i=1

eiζi

)
dx−

∫
Ω
ϕ+

fk(u+)
(u+ 1

k
)

(
m∑

i=1

eiζi

)
dx

−λ
∫

Ω

(
∑m

i=1 eiζi)
(u+ + 1

k
)γ

dx+
∫

Ω
|∇ϕ|N−2∇ϕ∇

(
m∑

i=1

eiξi

)
dx

−
∫

Ω
fk(u+)

(
m∑

i=1

eiζi

)
dx

=
∫

Ω
|∇u|N dx−

∫
Ω
ϕ+

fk(u+)u+

(u+ 1
k
)
dx− λ

∫
Ω

u

(u+ + 1
k
)γ
dx

+
∫

Ω
|∇ϕ|N dx−

∫
Ω
fk(u+)ϕ dx.

Therefore, we are left with

⟨Φ(ζ, ξ), (ζ, ξ)⟩ = ∥u∥N + ∥ϕ∥N −
∫

Ω
ϕ+

fk(u+)u+

(u+ 1
k
)
dx

− λ
∫

Ω

u

(u+ + 1
k
)γ
dx−

∫
Ω
fk(u+)ϕ dx.

(4.11)

Using the fact that f(s) is positive when s > 0, we have∫
Ω
ϕ+

fk(u+)u+

(u+ 1
k
)
dx+

∫
Ω
ϕf(u+) dx ≤ 2

∫
Ω
ϕ+f(u+) dx. (4.12)

To obtain an estimate of this term, we first recall, from (3.16) and (3.17) of Chapter
3, the sets Ω+

k and Ω−
k . With this, we can separate the integral from (4.12) and we shall

have ∫
Ω
fk(u+)ϕ dx =

∫
Ω+

k

fk(u+)ϕ dx+
∫

Ω−
k

fk(u+)ϕ dx.

By Lemma 4.2.1, we have the following∣∣∣∣∣
∫

Ω+
k

fk(u+)ϕ dx
∣∣∣∣∣ ≤

∫
Ω+

k

|u+|r|ϕ| exp{2N ′
αuN ′} dx

≤

[∫
Ω+

k

|u+|N
′r|ϕ|N ′

dx

]1/N ′ [∫
Ω+

k

exp{N2N ′
α|u+|N

′} dx

]1/N

,

(4.13)
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where we have used Holder Inequality with the exponents N and N ′ = N
N−1 . Using the

same result for the first term, we obtain∫
Ω
|u+|N

′r|ϕ|N ′
dx ≤

(∫
Ω
|u|N

′(r+1) dx

) r
r+1
(∫

Ω
|ϕ|N

′(r+1) dx

) 1
r+1

,

since
r

r + 1 + 1
r + 1 = 1.

Besides that, if ρ ≥ ∥u∥W 1,N
0 (Ω), then

∫
Ω
exp{N2N ′

α|u|N ′} dx ≤
∫

Ω
exp

N2N ′
αρN ′

(
|u|

∥u∥W 1,N
0 (Ω)

)N ′ dx

and, for ρ ≤ 1
2

(
αN

Nα

)N ′
, we have, by the Trudinger-Moser Inequality,∫

Ω
exp{N2N ′

α|u|N ′} dx ≤ L
1
N (N)|Ω| 1

N . (4.14)

Therefore, we have just obtained the estimate∣∣∣∣∣
∫

Ω+
k

fk(u+) dxϕ
∣∣∣∣∣ ≤ ∥u∥r ∥ϕ∥ (L(N)|Ω|)

1
N . (4.15)

This is just half of the solution. Now, we need to estimate the integral of ϕfk(u+)
on Ω−

k and again by using the result of Lemma 4.2.1, we have∣∣∣∣∣
∫

Ω−
k

fk(u+)ϕ dx
∣∣∣∣∣ ≤ C2

∫
Ω−

k

|u+|2exp{2N ′
αuN ′

+ }|ϕ| dx

≤ 1
k2

[∫
Ω−

k

|ϕ|N ′
dx

]1/N ′ [∫
Ω−

k

exp{N2N ′
α|u+|N

′} dx

]1/N

.

(4.16)

Using (4.14) one more time, we have∣∣∣∣∣
∫

Ω−
k

fk(u+)ϕ dx
∣∣∣∣∣ ≤ 1

k2 ∥ϕ∥ (L(N)|Ω|)
1
N . (4.17)

Combining (4.15) and (4.17), we finally obtain∣∣∣∣∫
Ω
fk(u+)ϕ dx

∣∣∣∣ ≤ (∥u∥r ∥ϕ∥+ 1
k2 ∥ϕ∥) (L(N)|Ω|)

1
N ,

which, together with (4.11), implies that

⟨Φ(ζ, ξ), (ζ, ξ)⟩ ≥ ∥u∥N + ∥ϕ∥N − (∥u∥r ∥ϕ∥+ 1
k2 ∥ϕ∥) (L(N)|Ω|)

1
N − λ

∫
Ω

u

(u+ + 1
k
)γ
dx.
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The last term can also be estimated by the norm ∥u∥, now by the application of
the Sobolev Embedding Theorems,∣∣∣∣∫

Ω

u

(u+ + 1
k
)γ
dx

∣∣∣∣ ≤ ∫
Ω
u1−γ dx ≤

∫
Ω
(u+ 1) dx ≤ C ∥u∥+ |Ω|,

where we have used 1− γ ∈ (0, 1).

Thus, we obtain

⟨Φ(ζ, ξ), (ζ, ξ)⟩ ≥ ∥u∥N + ∥ϕ∥N − (∥u∥r ∥ϕ∥+ 1
k2 ∥ϕ∥) (L(N)|Ω|)

1
N − λ(C ∥u∥+ |Ω|).

To complete our proof, we need to find ρ > 0 such that ⟨Φ(ζ, ξ), (ζ, ξ)⟩ ≥ 0 for
|(ζ, ξ)|d = ρ, | · |d being a norm on R2N . We shall choose here

|(ζ, ξ)|Nd = |ζ|Ne + |ξ|Ne ,

where |ζ|e is the Euclidean norm on Rm, which is equal to the norm ∥u∥ of u ∈ Vm image
of ζ ∈ RN by the isomorphism between the two spaces (and the same reasoning for |ξ|e).
Notice that with this definition, we have

∥u∥ ≤ |(ζ, ξ)|d , ∥ϕ∥ ≤ |(ζ, ξ)|d

and with this, we can rewrite

⟨Φ(ζ, ξ), (ζ, ξ)⟩ ≥ |(ζ, ξ)|Nd − (L(N)|Ω|)
1
N |(ζ, ξ)|r+1

d

− 1
k2 ∥ϕ∥ (L(N)|Ω|)

1
N − λ(C ∥u∥+ |Ω|).

(4.18)

Remembering we still need ρ be small enough so that (4.14) is satisfied, we take

ρ < min
{

1
2

( αN

αN

)N ′

, (L(N)|Ω|)
N−(r+1)

N

}
,

which implies
|(ζ, ξ)|Nd − (L(N)|Ω|)

1
N |(ζ, ξ)|r+1

d > 0.

Taking k ∈ N and λ > 0 such that

ρN − (L(N)|Ω|)
1
N ρr+1 >

(L(N)|Ω|)
1
N ρ

k2

and

ρN − (L(N)|Ω|)
1
N ρr+1 − (L(N)|Ω|)

1
N ρ

k2 > λ(Cρ+ |Ω|),

we obtain, for all (ζ, ξ) such that |(ζ, ξ)|d = ρ,

⟨Φ(ζ, ξ), (ζ, ξ)⟩ > 0,

as we wanted.
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We then proved the necessity for us to use Lemma 4.1.1, which gives us a pair of
sequences of functions um, ϕm, both composed by elements of each Vm, satisfying∫

Ω
|∇um|N−2∇um∇ej dx−

∫
Ω
ϕm+

fk(um+)
um+ + 1

k

ej dx− λ
∫

Ω

ej

(um+ + 1
k
)γ
dx = 0,

∫
Ω
|∇ϕm|N−2∇ϕm∇ej dx−

∫
Ω
fk(um+)ej dx = 0

for j = 1, 2, ...,m. Because we are dealing with basis elements, we can expand this to the
whole space Vm, so that∫

Ω
|∇um|N−2∇um∇ω dx−

∫
Ω
ϕm+

fk(um+)
um+ + 1

k

ω dx− λ
∫

Ω

ω

(um+ + 1
k
)γ
dx = 0, (4.19)

∫
Ω
|∇ϕm|N−2∇ϕm∇ω dx−

∫
Ω
fk(um+)ω dx = 0, ω ∈ Vm. (4.20)

It is important to notice that both sequences satisfy ∥um∥ , ∥ϕm∥ ≤ ρ and that
this limiting constant does not depend on the index m. We have obtained then a pair of
sequences with its terms limited, on W 1,N

0 (Ω), by a common constant. By known results,
namely the Sobolev Embedding Theorems, we can extract a pair of subsequences, which
we still denote by (um), (ϕm), and a pair of functions u, ϕ ∈ W 1,N

0 (Ω) such that

um ⇀ u in W 1,N
0 (Ω) and um → u in Ls(Ω),

ϕm ⇀ ϕ in W 1,N
0 (Ω) and ϕm → ϕ in Ls(Ω), s ∈ [N,∞).

(4.21)

Notice that this should also imply convergence in Ls(Ω), with s ∈ [1, N), since Ω
is of finite measure.

What we show now is that we can actually assert the strong convergences in
W 1,N

0 (Ω),
um → u in W 1,N

0 (Ω) and ϕm → ϕ in W 1,N
0 (Ω). (4.22)

For that, let us first consider two sequences, provided to us by the fact that
B = {e1, e2, · · · , en, · · · } is a Schauder basis, (αn)n∈N ⊂ R and (βn)n∈N ⊂ R such that

u =
∞∑

i=1

αiei and ϕ =
∞∑

i=1

αiei (4.23)

and thus

ψn =
n∑

i=1

αiei → u and θn =
n∑

i=1

βiei → ϕ in W 1,N
0 (Ω).
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If we use (um − ψm) as a test function in (4.19), we shall have∫
Ω
|∇um|N−2∇um∇(um − ψm) dx−

∫
Ω
ϕm+

fk(um+)
um+ + 1

k

(um − ψm) dx

− λ
∫

Ω

(um − ψm)
(um+ + 1

k
)γ
dx = 0.

(4.24)

Now, since we are dealing with Lipschitz continuous functions, we have, applying
Lemma 4.2.1,∣∣∣∣∫

Ω
ϕm+

fk(um+)
um+ + 1

k

(um − ψm) dx
∣∣∣∣ ≤ ∫

Ω
|ϕm+|

|fk(um+)|
|um+|

|um − ψm| dx

≤ ck

∫
Ω
|ϕm+||um − ψm| dx

≤ ck|ϕm+|N
′

N ′|um − ψm|NN .

(4.25)

Besides that, we also have∣∣∣∣∫
Ω

(um − ψm)
(um+ + 1

k
)γ
dx

∣∣∣∣ ≤ kγ|um − ψm|1.

Thus, by the characterization in (4.23), which asserts Ls(Ω) convergence for ψm,
we obtain

lim
m→∞

∫
Ω
|∇um|N−2∇um∇(u− ψm) dx = 0,

which in turn gives us, together with (4.24) and the above estimates,

lim
m→∞

∫
Ω
|∇um|N−2∇um∇(um − u) dx = 0.

With this, we have shown that we are able to apply the (S+)-property of the −∆N

operator (see the paragraph right after Definition 4.1.1) and, by doing so, we finally obtain
the first claim in (4.22). We shall not repeat our arguments here to not prolong too much
our work, but it is evident that the same development can be applied to show the strong
convergence of ϕm in W 1,N

0 (Ω). The only difference is that for that we would use the
following estimate ∣∣∣∣∫

Ω
fk(um+)(ϕm − θm) dx

∣∣∣∣ ≤ Ck∥um+∥∥ϕm − θm∥.

Now, going back to equations (4.19) and (4.20), we note that we can take ω ∈ Vl

for l ≤ n and because of that, applying the limit m→∞ gives us, by (4.22),∫
Ω
|∇u|N−2∇u∇ω dx−

∫
Ω
ϕ
fk(u)

(u+ 1
k
)
ω dx− λ

∫
Ω

ω

(u+ 1
k
)γ
dx = 0, (4.26)

∫
Ω
|∇ϕ|N−2∇ϕ∇ω dx−

∫
Ω
fk(u)ω dx = 0, ω ∈ Vl, (4.27)



69

for all l ∈ N. Since the union of all Vl is dense in W 1,N
0 (Ω), we achieve∫

Ω
|∇u|N−2∇u∇ω dx−

∫
Ω
ϕ
fk(u)

(u+ 1
k
)
ω dx− λ

∫
Ω

ω

(u+ 1
k
)γ
dx = 0, (4.28)

∫
Ω
|∇ϕ|N−2∇ϕ∇ω dx−

∫
Ω
fk(u)ω dx = 0, ω ∈ W 1,N

0 (Ω). (4.29)

To prove that these are solutions to (Pk), we must show that u ≥ 0 for every x ∈ Ω.
For this, we take ω = u− = max{−u, 0} in (4.28),

−∥u−∥N =
∫

Ω
|∇u|N−2∇u∇(u−) dx

=
∫

Ω
ϕ+

fk(u+)
u+ + 1

k

(u−) dx+ λ

∫
Ω

u−

(u+ + 1
k
)γ
dx ≥ 0,

(4.30)

showing that u = u+. Furthermore, the same argument for (4.29), together with the fact
that f satisfies condition (4.1), shows that

−∥ϕ−∥N =
∫

Ω
fk(u+)ϕ− dx ≥ 0

which implies that ϕ = ϕ+ and therefore shows that the functions u, ϕ will constitute a
pair of weak solutions to (Pk). Also, by the developments of Section 4.2, we know that
u, ϕ ∈ W 1,N

0 (Ω) ∩ C1,β(Ω) for some β ∈ (0, 1). We will from now on denote them by uk

and ϕk, to reassure their dependence on the parameter k in the auxiliary system.

Now, the last step to prove Theorem 4.0.1 is to argue that the sequences uk, ϕk

tend to functions which satisfy the conditions of weak solutions to Problem (P3). For that,
let us notice that, because of the weak convergences in the space W 1,N

0 (Ω), we have

∥uk∥ ≤ lim inf
m→∞

∥um∥ ≤ ρ (4.31)

and the same applies to each function ϕk. Again, the limiting constant does not depend
on the index k of the functions of the sequence. That means we are left with new
bounded sequences in W 1,N

0 (Ω) and once more we can affirm that there exist functions
uλ, ϕλ ∈ W 1,N

0 (Ω) such that, up to a subsequence,

uk ⇀ uλ in W 1,N
0 (Ω) and uk → uλ in Ls(Ω),

ϕk ⇀ ϕλ in W 1,N
0 (Ω) and ϕk → ϕλ in Ls(Ω), s ∈ [N,∞).

(4.32)

Once more, we must show, in a manner similar to what we did in Chapter 3 to
prove the convergences (3.28) and (3.29), that we have the following, as k → +∞,∫

Ω
ϕk

fk(uk)
(uk + 1

k
)
ω dx −→

∫
Ω
ϕ
f(uλ)
uλ

ω dx, (4.33)
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and ∫
Ω
fk(uk)ω dx −→

∫
Ω
f(uλ)ω dx. (4.34)

Since now the test function ω belongs to LN(Ω), we must bound uniformly the
norms

∣∣∣ϕk
fk(uk)
(uk+ 1

k
)

∣∣∣
N ′

and |fk(uk)|N ′ , where once more N ′ = N
N−1 is the conjugate exponent

to N . What we shall do, however, is to bound its norm in N
2 , so that, given the known

estimate (see the Appendix)

|h|N ′ ≤ |Ω|r |h|N/2 , for h ∈ LN/2(Ω) and r = 1
N ′ −

2
N
,

we will get the desired result.2

Therefore, let us compute∫
Ω

∣∣∣∣ϕk
fk(uk)

(uk + 1
k
)

∣∣∣∣N/2

dx ≤

(∫
Ω+

k

|ϕk|N/2|uk|
N
2 (r−1)exp{2N ′(N/2)α|uk|N

′} dx+

+
∫

Ω−
k

|ϕk|N/2 exp{2N ′(N/2)α|uk|N
′} dx

)

≤
(∫

Ω
|ϕk|N |uk|N(r−1) dx

) 1
2
(∫

Ω
exp{N2N ′

α|u|N ′} dx
) 1

2

+

+
(∫

Ω
|ϕk|N dx

) 1
2
(∫

Ω
exp{N2N ′

α|u|N ′} dx
) 1

2

≤ (L(N)|Ω|) 1
2N

[(∫
Ω
|ϕk|Nr dx

) 1
2r
(∫

Ω
|uk|Nr dx

) r−1
2r

+

+
(∫

Ω
|ϕk|N dx

) 1
2
]
,

(4.35)

where, in the second inequality, we have used (4.14).3 Thus, by the Sobolev Embeddings,
we obtain∫

Ω

∣∣∣∣ϕk
fk(uk)

(uk + 1
k
)

∣∣∣∣N/2

dx ≤ C̃1 ∥ϕk∥N/2 ∥uk∥N/2 + C̃2 ∥ϕk∥N/2 ≤ C̃1ρ
N + C̃2ρ

N/2.

In a similar way, we can write∫
Ω
|fk(uk)|

N
2 dx ≤

(∫
Ω+

k

|uk|
N
2 rexp{2N ′(N/2)α|uk|N

′} dx+

+
∫

Ω−
k

|uk|
N
2 exp{2N ′(N/2)α|uk|N

′} dx

)

≤ (L(N)|Ω|) 1
2N

[(∫
Ω
|uk|Nr dx

) 1
2

+
(∫

Ω
|uk|N dx

) 1
2
]
,

(4.36)

2 Notice that, since N ≥ 3, we shall have N
2 ≥ N ′.

3 It becomes clear now why we have chosen to use the norm in L
N
2 (Ω), rather than in LN ′(Ω).

With the latter, it would not be possible to use (4.14), as we have just done.
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from which we now obtain∫
Ω
|fk(uk)|

N
2 dx ≤ C̃3 ∥uk∥

Nr
2 + C̃4 ∥uk∥

N
2 ≤ C̃3ρ

Nr
2 + C̃4ρ

N
2 .

Again by the LN(Ω) convergences assured now by (4.32) (and also taking into
account the uniform convergence assured by Lemma 3.1.2), we have ϕk

fk(uk)
(uk+ 1

k
) → ϕλ

f(uλ)
uλ

and fk(uk)→ f(uλ) a.e. in Ω. Using Theorem 3.1.1, as we have already done in Chapter
3, we obtain ϕk(uk)2∗−2 ⇀ ϕλu

2∗−2
λ and f(uk) ⇀ f(uλ) in LN ′(Ω).

We can then define the functional in LN ′(Ω) which relates, to any v ∈ LN ′(Ω), the
number

∫
Ω vω dx, which is well defined, since ω ∈ LN(Ω). We can, at last, use the weak

convergences achieved in the last paragraph and show that , which is equivalent to (4.33)
and (4.34).

As for the limit of the sequence accompanying λ, we have the following: By the
developments of Section 4.2, each uk will be limited from below by δφ1 and, by the
Hardy-Sobolev Inequality (see Appendix), we have

ω

(φ1)γ
∈ L1(Ω), for ω ∈ W 1,N

0 (Ω),

which permits us to use the DCT to conclude that∫
Ω

ω

(uk + 1
k
)γ
dx −→

∫
Ω

ω

uγ
λ

dx,

since the convergence a.e. of the sequence inside the integral is straightforward. From this,
we finally obtain∫

Ω
|∇uλ|N−2∇uλ∇ω dx−

∫
Ω
ϕλ(uλ)2∗−2ω dx− λ

∫
Ω

ω

uγ
λ

dx = 0,∫
Ω
|∇ϕλ|N−2∇ϕλ∇ω dx−

∫
Ω
f(uλ)ω dx = 0, ω ∈ H1

0 (Ω).

The pair (uλ, ϕλ) then satisfies the equations necessary for being a pair of weak
solutions of the main Problem (P3). Since the regularity of this pair of functions, as well
as the fact that uλ > 0, was already proven in Section 4.2, we conclude the assertion that
(uλ, ϕλ) is a solution pair to problem (P3) and Theorem 4.0.1 is proven.

4.4 PROOF OF THEOREM 4.0.2 BY SCHAUDER FIXED POINT THEORY

In this last section, we aim to solve problem (P4). As we have mentioned, this will
be done by way of the Schauder Fixed Point Theorem. For that, let us recall such. For
more details and proof, see [44, Corollary 11.2].

Theorem 4.4.1 (Schauder’s Fixed Point Theorem). Let E be a Banach space, and let C
be a nonempty closed and convex set in E. Suppose further that F : C → C is a continuous
and compact map, that is, such that F (C) ⊂ K, where K ⊂ C is a compact subset. Then,
F has a fixed point.
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We shall need then to define an operator in the appropriate function space such
that a fixed point is the solution to our system. The details will become clearer ahead.
First, we introduce some known results from the study of the p-Laplacian and problems
concerning such operator.

Let ϕ0 ∈ W 1,N
0 (Ω) ∩ C1,α(Ω̄) be the solution of the torsion problem{

−∆Nϕ0 = 1 in Ω
ϕ0 = 0 on ∂Ω.

(4.37)

It follows from [45, 41, 46] that, for v ∈ L∞(Ω), the equation −∆pu = v in Ω with
u = 0 on ∂Ω has a unique weak solution u which belongs to C1,σ(Ω) for some σ ∈ (0, 1) and
that the associated solution operator (−∆p)−1 : L∞(Ω)→ C1(Ω) is positive, continuous
and compact. Moreover, if v ≥ 0 and v ̸≡ 0, then u belongs to the interior of the positive
cone in C1(Ω), that is, u > 0. Hence ∂u/∂η < 0 on ∂Ω and u is bounded from above and
from below by positive multiples of the distance function dist(x, ∂Ω). Here η is the unit
normal vector to ∂Ω pointing outwards. Thus (−∆p)−1 is a strongly positive operator
on C(Ω), i.e., v ∈ P implies (−∆p)−1v ∈ int(P ), where P denotes the cone of positive
functions belonging C(Ω).

In addition, for the p-Laplacian operator, we can state the following comparison
principle, which will be important ahead.

Theorem 4.4.2. If Ω is a bounded domain in RN and if u, v ∈ W 1,p
loc (Ω) ∩ C(Ω) with

1 < p <∞ satisfy, in the weak sense, −∆pu ≤ −∆pv on Ω and u ≤ v on ∂Ω, then u ≤ v

in Ω.

Proof. First of all, we have, by hypothesis, that∫
Ω
|∇u|p−2∇u∇ω dx ≤

∫
Ω
|∇v|p−2∇v∇ω dx,

for every non-negative ω ∈ W 1,p
0 (Ω). Thus, taking ω = max{u(x) − v(x), 0} ∈ W 1,p

0 (Ω),
the following inequality is satisfied∫

A

{
|∇u|p−2∇u∇(u− v)− |∇v|p−2∇v∇(u− v)

}
dx ≤ 0, (4.38)

where A = {x ∈ Ω ; v(x) < u(x)}.

On the other hand, we affirm that the following inequality holds for all pair of
vectors a, b ∈ Rp (if p > 1) 〈

|b|p−2 b− |a|p−2 a, b− a
〉
≥ 0, (4.39)

where the equality is satisfied if, and only if, a = b.
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Indeed, suppose relation (4.39) is not valid. This would be equivalent to saying
that

|b|p − |b|p−2 ⟨b, a⟩+ |a|p − |a|p−2 ⟨b, a⟩ < 0,

where we have just distributed all the included terms. Therefore,

|b|p + |a|p < (|b|p−2 + |a|p−2)⟨b, a⟩ ≤ (|b|p−2 + |a|p−2) |b| |a|
= (|b|p−1 |a|+ |a|p−1 |b|),

(4.40)

which can also be written as

0 < (|b|p−1 − |a|p−1)(|a| − |b|),

which is a contradiction if p > 1. For the proof that the equality in (4.39) implies a = b,
one must do the same reasoning we have just conducted, from which it will be found that
0 ≤ (|b|p−1 − |a|p−1)(|a| − |b|), this being only satisfied when |a| = |b|. One must then
return to (4.39) and concludes the affirmation.

With this, we can return to (4.38), which can only be satisfied if ∇u = ∇v a.e. in
Ω, since its integrand is always non-negative. This means that u− v must be a constant
in A but, since u = v at ∂A and this is a continuous function, we must have A a null
measure set, so that v ≥ u a.e. in Ω.

Now, it follows from our considerations in Remark 1.4.2 the existence of a solution
U ∈ C1(Ω) to the problem4 

−∆Nu = 1
uγ in Ω,

u > 0 in Ω,
u = 0 on ∂Ω.

(4.41)

Let us then define
U∞ = sup

x∈Ω
U(x) , ϕ0,∞ = sup

x∈Ω
ϕ0(x) (4.42)

and consider

Λ = min

1,
(

1
U∞2

1
γ

) 1
1−γ
N−1 + N−2

γ

,

(
1

2ϕ0,∞U
(rN ′+γ−1)
∞ exp{αUN ′

∞ N ′}

) 1
(rN′+γ−1) 1−γ

N−1 −1

 .

(4.43)

Furthermore, define at last the operator

Tϵ : (C(Ω))2 −→ (C(Ω))2

(v, ψ) 7−→ Tϵ(v, ψ) := (uϵ, ϕϵ), (4.44)
4 Indeed, Problem (4.41) is nothing but a decoupled version of System P3, where we take f ≡ 0.

Thus, the condition in Remark 1.4.2 is trivially satisfied.
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where (uϵ, ϕϵ) is the unique weak solution of
−∆Nu = λ

vγ+ϵ
− ψvr−1 exp{αvN ′} in Ω,

−∆Nϕ = vr exp{αvN ′} in Ω,
u > 0 in Ω,
u = ϕ = 0 on ∂Ω.

(4.45)

Given the regularity of both v and ψ, we can affirm, by the comments made above,
that Tϵ is indeed well defined for every ϵ > 0. Now, if we wish to obtain a solution pair
(u, ϕ) ∈ (C(Ω))2 such that u > 0, we must restrict the domain of Tϵ to a class of functions
with this restriction. For that, we use the solution U to Problem (4.41), together with the
function ϕ0, which will serve as a bound for ϕ. More specifically, we shall consider as the
domain of Tϵ the subset

A =
{

(v, ψ) ∈ (C(Ω))2 : λU ≤ v ≤ k1 and 0 ≤ ψ ≤ k2ϕ0
}

(4.46)

of (C(Ω))2, where the positive constants k1 and k2 are given in the following

Lemma 4.4.1. Consider Λ satisfying (4.43), 0 < λ < Λ and A as defined in (4.46).

There exists ϵ∗ > 0 and k1 > 0 such that, if we suppose that k2 > 0 satisfies

kr
1 exp{αkN ′

1 } ≤ kN−1
2 (4.47)

and
k2ϕ0,∞k

γ+r−1
1 exp{αkN ′

1 } <
λ

2 , (4.48)

where we remember r is such that

(γ + rN ′ − 1)
(

1− γ
N − 1

)
> 1, (4.49)

then Tϵ, for 0 < ϵ < ϵ∗, is well defined and Tϵ maps A into A.

Proof. First of all, notice that conditions (4.47) and (4.48) are equivalent to

k
r

N−1
1 exp{ α

N − 1k
N ′

1 } ≤ k2 ≤
λ

2ϕ0,∞k
γ+r−1
1 exp{αkN ′

1 }
,

which is possible if
k

(rN ′+γ−1)
1 exp{αN ′kN ′

1 } <
λ

2ϕ0,∞
, (4.50)

where we have used 1
N−1 + 1 = N

N−1 = N ′.

Now, by (4.43), we have λ < 1 and, besides,

λU∞ < λ
1−γ
N−1U∞ <

(
1

2λN−2

) 1
γ

.
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Furthermore, again by (4.43), λ satisfies

λ(rN ′+γ−1) 1−γ
N−1U (rN ′+γ−1)

∞ exp{αUN ′

∞ N ′} < λ

2ϕ0,∞
, (4.51)

reminding also that r > 0 satisfies (4.49). Let us choose k1 > 0 satisfying

λU∞ < λ
1−γ
N−1U∞ = k1 <

(
1

2λN−2

) 1
γ

. (4.52)

With our choice in (4.52) and with condition (4.51), inequality (4.50) will be satisfied and
we can thus justify the choices in (4.47) and (4.48). Furthermore, from the first inequality
in (4.52), we obtain that A ≠ ∅.

Moreover, since λ
vγ+ϵ
− ψvr−1 exp{αvN ′}, vr exp{αvN ′} ∈ L∞(Ω), system (4.45), as

describe before, has an unique solution (uϵ, ϕϵ), showing that the operator Tϵ is indeed
well defined. Let (v, ψ) ∈ A, then

−∆Nu = λ

vγ + ϵ
− ψvr−1 exp{αvN ′}

≥ λ

kγ
1 + ϵ

− ψkr−1
1 exp{αkN ′

1 }

≥ λ

kγ
1 + ϵ

− k2ϕ0,∞k
r−1
1 exp{αkN ′

1 }.

(4.53)

On the other hand, notice that, by (4.48),

λ− k2ϕ0,∞k
γ+r−1
1 exp{αkN ′

1 } >
λ

2
so that, using (4.52),

λ

kγ
1
− k2ϕ0,∞k

r−1
1 exp{αkN ′

1 } >
λ

2kγ
1
> λN−1. (4.54)

Now, defining the continuous function Gλ : [0,+∞)→ R by

Gλ(ϵ) = λ

kγ
1 + ϵ

− k2ϕ0,∞k
r−1
1 exp{αkN ′

1 },

we obtain Gλ(0) = λ
kγ

1
− k2ϕ0,∞k

r−1
1 exp{αkN ′

1 } > λ
2kγ

1
> λN−1 and thus, by continuity,

there exists ϵ∗ = ϵ∗(λ) > 0 such that,

Gλ(ϵ) > λN−1 if ϵ ∈ (0, ϵ∗).

By (4.54) and the definition of Gλ(ϵ), we conclude that

−∆Nu = Gλ(ϵ) ≥ λN−1 = −∆N(λϕ0).

By the comparison principle, we obtain

λϕ0 ≤ u. (4.55)
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Now,

−∆Nu = λ

vγ + ϵ
− ψvr−1 exp{αvN ′}

≤ λ

vγ

≤ λ1−γ 1
Uγ

= −λ1−γ∆NU = −∆N(λ
1−γ
N−1U).

(4.56)

By comparison principle and (4.52), we can write

u ≤ λ
1−γ
N−1U ≤ k1. (4.57)

On the other hand, for ϕ, given as the solution to

−∆Nϕ = vr exp{αvN ′} ≥ 0

we obtain, again by the comparison principle, that ϕ ≥ 0.

Furthermore,

−∆Nϕ = vr exp{αvN ′} ≤ kr
1 exp{αkN ′

1 } ≤ kN−1
2 = −∆N(k2ϕ0),

which implies at last
ϕ ≤ k2ϕ0. (4.58)

Therefore, T maps A into A, thus completing the proof of Lemma 4.4.1.

We are now in the right position to prove, via the Schauder Fixed Point Theorem,
our main result, namely Theorem 4.0.2. Let us start with the existence affirmation. We
have just seen that Lemma 4.4.1 allows us to define the operator Tϵ : A → A given by
(4.44) and its continuity can be seen through standard estimates of the regularity theory
and the strong notion of convergence we have in A. Notice further that A is closed and
convex. Therefore, remains only to prove that the map Tϵ is compact. Indeed, considering
system (4.45) and defining

Γ =
(

λ
vγ+ϵ
− ψvr−1 exp{αvN ′}
vr exp{αvN ′}

)
,

we have that Γ belongs to (C(Ω))2, which implies that Γ ∈ (Lp(Ω))2 for any 1 < p <∞.
By using elliptic estimates [38], we get Tϵ(v, ψ) ∈ (W 2,p(Ω))2, for any 1 < p < ∞. The
Sobolev-Morrey’s Embedding Theorem entails Tϵ(v, ψ) ∈ (C1,ρ(Ω))2, for any 0 < ρ < 1.
Using that C1,ρ(Ω) is compactly embedded in C(Ω), this implies that Tϵ is compact.
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Finally, using Schauder Fixed Point Theorem (Theorem 4.4.1), we get the existence
of a fixed point (uϵ, ϕϵ) ∈ (C1,ρ(Ω))2 of Tϵ, that is,

−∆Nuϵ = λ
uγ

ϵ +ϵ
− ϕϵu

r−1
ϵ exp{αuN ′

ϵ } in Ω,
−∆Nϕϵ = ur

ϵ exp{αuN ′
ϵ } in Ω,

uϵ > 0 in Ω,
uϵ = ϕϵ = 0 on ∂Ω.

(4.59)

By compactness results, analogous to what we have done in the previous chapters, we
can extract a convergent subsequences in C1(Ω), which we will continue denoting by (uϵ)
and (ϕϵ), respectively, and (u, ϕ) ∈ (C1(Ω))2 such that (uϵ, ϕϵ)→ (u, ϕ) in the (C1(Ω))2

topology. Since (uϵ, ϕϵ) ∈ A, there exist k1 and k2, independent of ϵ, such that

λU ≤ uϵ ≤ k1 and 0 ≤ ϕϵ ≤ k2ϕ0. (4.60)

By the uniform convergence in weak formulation of (4.59) and (4.60), we get
−∆Nu+ ϕur−1 exp{αuN ′} = λ

uγ in Ω,
−∆Nϕ = ur exp{αuN ′} in Ω,
u > 0 in Ω,
u = ϕ = 0 on ∂Ω.

Therefore, according to our construction, we have a weak solution (u, ϕ) ∈ (C1(Ω))2 and
this completes the proof of the existence.

At last, let us prove uniqueness of solution of system (P4), supposing that α = 0.
Assume that function pairs (u, ϕu) and (v, ϕv) are two different positive solutions of system
(P4). Then, using u− v as the test function in the weak formulation of the problem,∫

Ω
|∇u|N−2(∇u,∇(u− v)) dx+

∫
Ω
ϕuu

r−1(u− v) dx− λ
∫

Ω
u−γ(u− v) dx = 0 (4.61)

∫
Ω
|∇v|N−2(∇v,∇(u− v)) dx+

∫
Ω
ϕvv

r−1(u− v) dx− λ
∫

Ω
v−γ(u− v) dx = 0. (4.62)

Subtracting (4.62) from (4.61), one obtains

C∥u− v∥N +
∫

Ω

[
ϕuu

r−1 − ϕvv
r−1] (u− v) dx

− λ
∫

Ω

(
u−γ − v−γ

)
(u− v) dx

≤
∫

Ω
(|∇u|N−2∇u− |∇v|N−2∇v,∇(u− v)) dx

+
∫

Ω

[
ϕuu

r−1 − ϕvv
r−1] (u− v) dx− λ

∫
Ω

(
u−γ − v−γ

)
(u− v) dx

= 0.

(4.63)
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Note that ∫
Ω

[
ϕuu

r−1 − ϕvv
r−1] (u− v) dx

=
∫

Ω
ϕuu

r dx+
∫

Ω
ϕvv

r dx−
∫

Ω
ϕuu

r−1v dx−
∫

Ω
ϕvv

r−1u dx.

By the Young inequality, it follows

ur−1v ≤ r − 1
r

ur + 1
r
vr, vr−1u ≤ r − 1

r
vr + 1

r
ur.

From the above information, there holds∫
Ω

[
ϕuu

r−1 − ϕvv
r−1] (u− v) dx

≥1
r

[∫
Ω

(ϕuu
r + ϕvv

r − ϕuv
r − ϕvu

r) dx
]

=1
r

∫
Ω

(ϕu − ϕv) (ur − vr) dx.

(4.64)

By the definitions of ϕu, ϕv in (P4), we have−∆Nϕu + ∆Nϕv = ur − vr, in Ω

ϕu = ϕv = 0, on ∂Ω.

Consequently

C ∥ϕu − ϕv∥N ≤
∫

Ω
(|∇ϕu|N−2∇ϕu − |∇ϕv|N−2∇ϕv,∇(ϕu − ϕv)) dx

=
∫

Ω
(ϕu − ϕv) (ur − vr) dx.

(4.65)

Therefore, by (4.64), we deduce that∫
Ω

[
ϕuu

r−1 − ϕvv
r−1] (u− v) dx ≥ C

r
∥ϕu − ϕv∥N .

Since 0 < γ < 1, we have the following elementary inequality(
a−γ − b−γ

)
(a− b) ≤ 0.

Thus,
∫

Ω (u−γ − v−γ) (u− v) dx ≤ 0. Consequently, it follows from (4.62) that

C∥u− v∥N + C

r
∥ϕu − ϕv∥N − λ

∫
Ω

(
u−γ − v−γ

)
(u− v) dx ≤ 0.

Consequently, ∥u − v∥N ≤ 0 and ∥ϕu − ϕv∥N ≤ 0. This leads to ∥u − v∥N = 0 and
∥ϕu − ϕv∥N = 0, which implies that u(x) = v(x) and ϕu(x) = ϕv(x) in Ω. So the function
pair (u, ϕu) is the unique positive solution of system (P4) when α = 0. The proof is
complete.
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APPENDIX A – SOME IMPORTANT RESULTS

Let us see here some results concerning Lp(Ω) spaces and Sobolev spaces which are
used extensively throughout the present work. We begin with a crucial and well known
result for estimating the integral of the product of two functions.

Theorem A.0.1 (Holder Inequality). Let p ∈ (1,+∞) and p′ = p
p−1 its conjugate exponent,

meaning 1
p

+ 1
p′ = 1. Then, if f ∈ Lp(Ω) and g ∈ Lp′(Ω), fg ∈ L1(Ω) and

|fg|1 =
∫

Ω
|fg| dx ≤

(∫
Ω
|f | dx

)1/p(∫
Ω
|g| dx

)1/p′

= |f |p |g|p′ .

Proof. See, for example, [2, Theorem 4.6]

From Theorem A.0.1, we can also extract an interesting result concerning the
relation between different Lp(Ω) spaces.

Corollary A.0.1.1. If p ∈ [1,+∞), f ∈ Lp(Ω) and r ∈ [1, p], then f ∈ Lr(Ω) and

|f |r ≤ |Ω|
s |f |p ,

where s = 1
r
− 1

p
.

Proof. For that, simply use the estimate found in Theorem A.0.1, taking |f |r ∈ L p
r (Ω)

and g ≡ 1 ∈ Lt(Ω), where t is the conjugate exponent of p
r
, that is,

t = p/r

p/r − 1 = p

p− r
.

Therefore, ∫
Ω
|f |r dx = ||f |r g|1 ≤

(∫
Ω
|f |r

p
r dx

)r/p(∫
Ω
|g|t dx

)1/t

=
(∫

Ω
|f |r dx

)r/p(∫
Ω

1 dx
)1/t

,

(A.1)

which implies
|f |r ≤ |Ω|

1/(rt) |f |p ,

with 1
rt

= 1
r
− 1

p
= s.

Next, we present an estimate concerning functions in the Sobolev Space W 1,p
0 (Ω)

which helps us deal with singular terms in our problems and prove the convergence of
certain integrals. For a example of its importance, see for example [47].
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Theorem A.0.2 (Hardy-Sobolev Inequality). Given u ∈ W 1,p
0 (Ω), p ∈ (1, N ] and τ ∈ [0, 1],

then u
φτ ∈ Lr(Ω), where φ1 is an eigenfunction of (−∆, H1

0 (Ω)) associated with the first
eigenvalue λ1 > 0 and r > 0 is such that 1

r
= 1

p
− 1−τ

N
. Moreover, there exists C > 0 such

that ∣∣∣∣ uφτ
1

∣∣∣∣
r

≤ C |∇u|p .

Proof. See [48].

Remark A.0.1. Notice that, in Theorem A.0.2, since r ≥ p > 1 and we consider here Ω
to be a bounded domain, one of the conclusions we can guarantee is that, for p ∈ (1, N ],

u

φτ
∈ L1(Ω) , ∀ u ∈ W 1,p

0 (Ω) , τ ∈ [0, 1]. (A.2)

Now, we shall go through some embedding results which helps us relate norm in
different Sobolev Spaces and Lp(Ω) spaces. These theorems are of most importance when
treating compactness properties of the sets we are deeply interested. First, we begin with
the Poincaré’s Inequality, which readily implies the equivalence of the norms in W k,p

0 (Ω)
and W k,p(Ω).

Theorem A.0.3 (Poincaré’s Inequality). Suppose p ∈ [1,+∞) and u ∈ W 1,p
0 (Ω). Then

we have the following estimate
|u|p ≤ C |∇u|p ,

with the constant C > 0 depending on p and Ω.

We recall that, given two Banach spaces X, Y , we say that X is continuously
embedded in Y , denoted by X ↪→ Y , if

1. X ⊂ Y ;

2. The linear map j : X → Y given by j(x) = x ∈ Y , known as canonical injection,
is a continuous operator. In other words, there exists a constant C > 0 such that
∥x∥Y ≤ C ∥x∥X , for all x ∈ X.

Furthermore, we say that X is compactly embedded in Y if j is also a compact
operator, meaning bounded sets of X are taken into relatively compact sets of Y . The most
used definition of compact operator T , equivalent to the one above, is that every bounded
sequence (xn)n∈N in X has a subsequence (xk)k∈N such that (Txk)k∈N is convergent.

Let us now go through the most important embedding theorems we shall use.

Theorem A.0.4 (Sobolev Embedding Theorems). The following embedding are continuous

• If 1 ≤ p < N , W 1,p(Ω) ↪→ Lp∗(Ω), where 1
p∗ = 1

p
− 1

N
.
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• If p = N , W 1,p(Ω) ↪→ Lq(Ω), for q ∈ [p,+∞).

• If p > N , W 1,p(Ω) ↪→ L∞(Ω).

In fact, Theorem A.0.4 is a particular, and more convenient, case of the following

Theorem A.0.5 (Sobolev-Morrey Embedding Theorems). Considering k ∈ N and p ≥ 1,
the following embedding are continuous

• If kp < N , W k,p(Ω) ↪→ Lq(Ω), where q ∈ [1, p∗] and 1
p∗ = 1

p
− 1

N
.

• If kp = N , W k,p(Ω) ↪→ Lq(Ω), for q ∈ [1,+∞).

• If p > N , W k,p(Ω) ↪→ Cτ (Ω) for some τ ∈ (0, 1). In addition, if Ω has the
strong Lipschitz properties, then we can actually affirm the continuous embedding
W j+k,p(Ω) ↪→ Cj,τ (Ω), j ∈ N.

Proof. Its proof can be seen in [1, Theorem 5.4].

We notice that, given the Poincaré’s Inequality, the norms in W 1,p(Ω) and W 1,p
0 (Ω)

are equivalent. In addition, seen that the latter is contained in the former, Theorem A.0.4
readily implies that the same embedding results are still valid when we consider W 1,p

0 (Ω).
Furthermore, considering also the embedding Lp1(Ω) ↪→ Lp2(Ω) when p1 ≥ p2 given by
Theorem A.0.1, the following corollary can be extracted of Theorem A.0.4

Corollary A.0.5.1. If p ∈ [1, N) and 1
p∗ = 1

p
− 1

N
, then we have the continuous embedding

W 1,p
0 (Ω) ↪→ Lq(Ω) , ∀ q ∈ [1, p∗].

In particular, H1
0 (Ω) ↪→ Lq(Ω), for all q ∈ [1, 2∗], meaning there exists a constant

C > 0 such that
|u|q ≤ C ∥u∥H1

0 (Ω) , ∀ u ∈ H1
0 (Ω).

At last, we give our final result, exploiting the cases when we obtain compact
embbedings of the Sobolev spaces.

Theorem A.0.6 (Rellich-Kondrachov Embedding Theorems). Let Ω be an open bounded
set in RN with C1 boundary. Then, the following embeddings are compact

• If 1 ≥ p < N , W 1,p(Ω) ↪→ Lq(Ω), for q ∈ [1, p∗), where 1
p∗ = 1

p
− 1

N
.

• If p = N , W 1,p(Ω) ↪→ Lq(Ω), for q ∈ [p,+∞).
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• If p > N , W 1,p(Ω) ↪→ C(Ω).

Proof. See [2, Theorem 9.16]

The collection of all these results, which we shall refer as the Sobolev Embedding
Theorems, together with some well known results, like the fact that reflexive spaces are
weakly compact and that Lp(Ω) convergence implies a.e. convergence, let us conclude the
following, which is an argument recurrent in this work,

Given a bounded sequence (un)n∈N in W 1,p
0 (Ω), we obtain a subsequence (which

we denote again by un) such that
un ⇀ u, in W 1,p

0 (Ω)

un → u, in Lq(Ω) , q ∈ [1, p∗]

un → u, a.e. in Ω.
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