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ABSTRACT

The aim of this work is to obtain a positive, smooth, even and homoclinic solution to
the problem

−(A(u)u′)′(t) + u(t) = λa1(t)|u(t)|q−1 + |u(t)|p−1 + g(|u′(t)|), in R.

Considering 1 < q < 2 < p < +∞ and a1 ∈ Ls(R) ∩ C(R), s = 2
2−q , a positive even function.

Also A : R→ R a Lipschitz, smooth (at least C1(R)), nondecreasing function satisfying

∃γ ∈ (0, 1) such that 0 < γ ≤ A(t) ∀t ∈ R,

and g : R −→ R a continuous function satisfying

0 ≤ sg(s) ≤ |s|θ for all s ∈ R, where 2 < θ ≤ 3.

By homoclinic we mean “homoclinic to the origin” or “homoclinic to zero” , i.e, the solution
must verify limx→±∞ u(x) = 0.

Keywords: Galerkin Method. Homoclinic Solution. Quadratic Growth on the Derivative.
Differential Equation.



RESUMO

O objetivo principal deste trabalho é obter uma solução positiva, suave, par e homoclínica
para o problema

−(A(u)u′)′(t) + u(t) = λa1(t)|u(t)|q−1 + |u(t)|p−1 + g(|u′(t)|), em R.

Considerando 1 < q < 2 < p < +∞ e a1 ∈ Ls(R) ∩ C(R), s = 2
2−q , uma função positiva e par.

Também A : R → R uma função Lipschitz, suave (minímo C1(R)), não decrescente e
satisfazendo

∃γ ∈ (0, 1) tal que 0 < γ ≤ A(t) ∀t ∈ R,

e g : R→ R uma função contínua satisfazendo

0 ≤ sg(s) ≤ |s|θ para todo s ∈ R, onde 2 < θ ≤ 3.

Por homoclínica estamos nos referindo a “homoclínica para a origem” ou “homoclínica para
zero”, isto é, a solução deve verificar limx→±∞ u(x) = 0.

Palavras-chave: Método de Galerkin. Solução Homoclínica. Crescimento Quadrático na
Derivada. Equação Diferencial.
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1 INTRODUCTION

The aim of this work is to obtain a positive, smooth, even and homoclinic solution to
the problem

−(A(u)u′)′(t) + u(t) = λa1(t)|u(t)|q−1 + |u(t)|p−1 + g(|u′(t)|), in R. (1.1)

Considering 1 < q < 2 < p < +∞ and a1 ∈ Ls(R) ∩ C(R), s = 2
2−q , a positive even function.

Also A : R→ R a Lipschitz, smooth (at least C1(R)), nondecreasing function satisfying

∃γ ∈ (0, 1) such that 0 < γ ≤ A(t) ∀t ∈ R, (1.2)

and g : R −→ R a continuous function satisfying

0 ≤ sg(s) ≤ |s|θ for all s ∈ R, where 2 < θ ≤ 3. (1.3)

By homoclinic we mean “homoclinic to the origin” or “homoclinic to zero” , i.e, the solution
must verify limx→±∞ u(x) = 0.

1.1 MOTIVATION FOR THE PROBLEM

The idea to consider this problem came after a careful reading of the article [1], where
the authors considered a similar equation but with a different set of hypothesis; namely their
formulation was focused in the study of the equation−(A(u)u′)′ + u(t) = h(t, u(t)) + g(t, u′(t)) in R

u(±∞) = u′(±∞) = 0,

with

(H1) h, g : R2 → R locally Hölder continuous, even on the first variable and h(t, 0) = g(t, 0) = 0;

(H2) there exist constants 0 < r1, r2 < 1 and smooth functions b ∈ L1(R)∩L∞(R) with b(t) > 0
for all t ∈ R, a1 ∈ L2(R) and a2 ∈ L

2
1−r2 (R), satisfying

b(t)|µ|r1 ≤ h(t, µ) ≤ a1(t) + a2(t)|µ|r2 , ∀(t, µ) ∈ R2;

(H3) there exist a constant 0 < r3 < 1 and smooth functions a3 ∈ L
2

1−r3 (R) and a4 ∈ L2(R)
satisfying

0 ≤ g(t, η) ≤ a4(t) + a3(t)|η|r3 ∀(t, η) ∈ R2;

(H4) the function A is smooth, nondecreasing and there exists γ ∈ (0, 1) satisfying

0 < γ ≤ A(t) ∀t ∈ R.
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Comparing with our work, we considered sup-linear growth on u and u′, terms involving
this type of growth are not covered in [1]. Another aspect that we would like to emphasize is
the weakening of the hypothesis over g: comparing with [1], we asked only for continuity over g,
instead of Hölder continuity.

Although the formulation presented here is not an immediate consequence of [1], some
techniques therein proved to be quite solid and very useful in the study of this type of problem,
transcending the circumstances framed by the authors. In this respect, we would like to
emphasize the [1, Thm. 3.1], which became (in this dissertation ) Theorem 19 and the final
part of the arguments presented in [1, Thm. 4.3]; these arguments were used here to prove
Proposition 31.

1.2 MAIN HURDLES

Our formulation presented some interesting challenges, for instance, the problem is not
variational. Among the non-variational techniques we chose the Galerkin Method as a tool
to gather information about existence of weak solutions. Although proving itself beneficial,
the Galerkin Method presented us with other types of challenges to circumvent. For example,
the nonlinear term g(|u′(t)|) with 0 ≤ sg(s) ≤ |s|θ and 2 < θ ≤ 3 enables us to take g(s) ≡
sign(s)|s|2. Thus estimations involving

∫
Ω |u′|2 become essential to the calculations but, at the

same time, a mystery: this is due to the lack of information about u′, since all embedding
theorems of H1

0 (Ω) do not provide a substantial information about u′ as it does for u.

We consider the case θ = 3 as the critical one and treat it separately in our estimations.
For θ > 3 we would get expressions involving

∫
|u′|θ−1 that we could not control, because

θ − 1 > 2 and we only know that u′ ∈ L2; for this reason, we limited θ ≤ 3, and θ > 2 was
required because we wanted to focus on the sup-linear case.

There are some literature about equations on domains in Rn involving the term |∇u|2 in
the nonlinearity (see [2, 3, 4]), some authors call this type of growth : “critical growth on the
gradient”. Simple changes in how this term appears in the equation can have dramatic effects
on the outcome. For instance, a simple change in the sign of |∇u|2 can lead to a total failure
to obtain a solution (even in the weak sense), see the article [3] for more information. With
that been said, we consider the possibility to take g(s) ≡ sign(s)|s|2 a major contribution of
our work to the study of equations following the same type as (1.1).

The methods applied in our work require certain symmetry, which is due mainly to a
lack of a comparison principle (known to the author) to guarantee that some limit-functions are
not zero almost everywhere (a.e). This necessity is expressed in the hypothesis of Theorem 19;
with emphasis on the items 2 and 4. To overcome this obstacle we founded this work focusing
on the set E1

0(I) = {u ∈ H1
0 (I);u(t) = u(−t) a.e }, I ⊂ R an interval, which is the subset of

H1
0 (I) consisting of even functions. This set can be understood as the set of radial symmetric

functions in R.
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1.3 STRAUSS APPROXIMATION

In order to develop our study, we used the Galerkin Method to construct a solution to a
problem approximating (1.1) in a bounded interval; this approximation is due to a sequence
of Lipschitz functions (fk) converging to g that has been called Strauss Approximation, after
appearing in the article [5]. This approximation was useful because it helped us to work with
the necessary estimations without extra hypothesis over g. In detail, our approximation was

−(A(u)u′)′(t) + u(t) = λa1(t)|u(t)|q−1 + |u(t)|p−1 + fk(|u′(t)|) + ψ
k
, in (−n, n)

u(n) = u(−n) = 0,
(1.4)

considering ψ ∈ L2(−n, n) a positive and even function; the term ψ
k
was utilized to guarantee

that a solution of (1.4) is not identically null. Regarding this approximation, we proved that

Theorem. There exist λ∗ > 0, β ∈ (0, 1) and k∗ ∈ N for which the problem (1.4) admits a
nontrivial, even, non-negative C1,β[−n, n] ∩ C2(−n, n) solution for every λ ∈ (0, λ∗) and k ≥ k∗.

The proof of this theorem is a direct consequence of Proposition 27 and Proposition 29.

We followed [6] in the definition and presentation of the properties of the sequence (fk).
In this article, the authors used this approximation to avoid the usage of Ambrosetti-Rabinowitz
condition and were able to obtain a positive solution to the equation

−∆u = λuq(r)−1 + f(r, u) in B(0, 1)

u > 0 in B(0, 1)

u = 0 on ∂B,

see [6] for more information.

We would like to emphasize that, in [6], the authors used this approximation in a term
involving u; namely they used it to approximate f(r, u). In our work we used it in u′. As far
as we can tell, this is the first time that this approximation was used in a term involving the
derivative of u.

After this step we were able to prove

Theorem. The equation−(A(u)u′)′(t) + u(t) = λa1(t)|u(t)|q−1 + |u(t)|p−1 + g(|u′(t)|), in (−n, n)

u(n) = u(−n) = 0,
(1.5)

has, for all λ ∈ (0, λ∗), a positive C1,α[−n, n] ∩ C2(−n, n) even solution for some α ∈ (0, β).

This was proved in Proposition 31 .

With this theorem we obtained a sequence (un) of solutions in W 1,2(R), (indexed with
“n” from the interval (−n, n)), that had converging subsequences when restricted to intervals
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such as Kj = [−j, j], and these candidates (the limits of the subsequences) could be extended
to a solution in R of (1.1). Using [7, Thm. 1] and some standard arguments, we were able to
prove that

Theorem. The equation

−(A(u)u′)′(t) + u(t) = λa1(t)|u(t)|q−1 + |u(t)|p−1 + g(|u′(t)|), in R. (1.6)

has an even, positive and C2(R) solution that satisfies

lim
x→±∞

u(x) = 0

for all λ ∈ (0, λ∗).

The construction of such solution was the main goal of Section 4.3.

1.4 FURTHER READING

In literature one can find a range of equations similar to (1.1) also seeking homoclinic or
heteroclinic solutions. We would like to, briefly, expose some of these works:

• Article [8] studies the existence of homoclinic solution, using arguments of lower and upper
solutions and fixed point theorem, for the equation

u′′(t)− ku(t) = f(t, u(t), u′(t)) a.e.t ∈ R (1.7)

considering f : R3 → R a L1−Carathédory function, that is, f verifies:

(i) for each (x, y) ∈ R2, t 7→ f(t, x, y) is measurable on R;

(ii) for almost every t ∈ R, (x, y) 7→ f(t, x, y) is continuous on R2;

(iii) for each ρ > 0, there exists a positive function ϕρ ∈ L1(R) such that, whenever
x, y ∈ [−ρ, ρ], then

|f(t, x, y)| ≤ ϕρ(t), a.e t ∈ R.

Comparing with our work we have proposed new arguments and utilized the weight A(u)
on the therm involving the second order derivative, not covered in [8]. This article also
presents some examples and applications of the Duffing-type equation, related to this
topic.

• Article [9] investigates the existence of positive solution to the equation

u′′ + cu′a(t)f(u) = 0

in unbounded intervals. The author considered c > 0 and f(x), a(t) non-negative functions;
moreover, the assumptions over these functions were:
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(H1) f : R+ → R+ is a locally Lipschitz function such that f(0) = 0, and there exists
d > 0 such that f(x) > 0 if 0 < x < d.

(H2) a : R→ R is a continuous function such that, for some α > 0; α < a(t) ≤ 1.

The author analyzed two types of problems of his interest:

Type 1 f has a zero, e.g. f(1) = 0, with f(u) > 0 whenever 0 < u < 1. In this case, he
searched for heteroclinic solutions which where strictly decreasing.

Type 2 Whether the proposed problem has a non-trivial positive solution defined in an
unbounded interval such as [t0,+∞] and satisfying u(t0) = 0 = u(+∞).

• Article [1] was previously discussed but, for completeness, we also mention it here.

• Article [10] searches heteroclinic solution for the problem

(a(x(t))x′(t))′ = f(t, x(t), x′(t)) a.e t ∈ R (1.8)

considering a(x) a non-linear, continuous and positive function and f : R3 → R a nonlinear
Carathédory function. In some aspect we think that is article, the article [1] and our work
complement each other in the investigation of equations of type (1.8).

1.5 DISPOSITION OF THE CHAPTERS

Chapter 2 deals with some basic properties of Sobolev Spaces; the main result therein
is an embedding theorem used afterwards.

Chapter 3 deals with the basic definition of Hölder Spaces and, again, the goal here is
to prove an embedding theorem.

Chapter 4 is where we treat the stated problem. We recommend the reader some
basic knowledge in measure theory and functional analysis; objectively, the topics covered from
chapters 1 to 8 of [11].
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2 SOBOLEV’S SPACES

Our main goal in this chapter is to prove the following theorem:

Theorem. There exists a constant C (depending only on |I| ≤ ∞) such that

1. ‖u‖L∞(I) ≤ C‖u‖W 1,p(I)∀u ∈ W 1,p(I), ∀1 ≤ p ≤ ∞.

In other words, W 1,p(I) ↪→ L∞(I) with continuous injection for all 1 ≤ p ≤ ∞.

Further, if I is bounded then

2. the injection W 1,p(I) ↪→ C(I) is compact for all 1 < p ≤ ∞,

3. the injection W 1,1(I) ↪→ Lq(I) is compact for all 1 ≤ q <∞.

This theorem was used multiple times throughout the argumentation of chapter 4. We
will follow the order and arguments from chapter 8 of [11]. The goal of this chapter is to
only discuss some basic properties of the Soblev Spaces in the context of R so, to a thorough
explanation, consider reading this great book.

2.1 DEFINITION AND BASIC PROPERTIES

Given I ⊂ R an open interval and 1 ≤ p ≤ ∞ we define

W 1,p(I) = {u ∈ Lp(I);∃g ∈ Lp(I) such that
∫
I
uϕ′dt = −

∫
I
gϕdt, ∀ϕ ∈ C∞0 (I)}. (2.1)

These classes of sets are called Sobolev spaces. If p = 2 we may use the notation H1(I) = W 1,2(I).
These sets are normed vector spaces with the norms – which are all equivalents– given by

1. ‖u‖W 1,p = ‖u‖Lp + ‖u′‖Lp ;

2. for 1 < p <∞, ‖u‖W 1,p = (‖u‖pLp + ‖u′‖pLp)
1/p .

Moreover, we have that:

• the space W 1,p is a Banach space for 1 ≤ p ≤ ∞;

• it is reflexive for 1 < p <∞;

• it is separable for 1 ≤ p <∞;

• H1 is a separable Hilbert space, with inner product given by :

〈u, v〉H1 = 〈u, v〉L2 + 〈u′, v′〉L2 .

Lemma 1. Let f ∈ L1
loc(I) be such that∫

I
fϕ′dt = 0 ∀ϕ ∈ C∞0 (I).

Then there exists a constant C such that f = C a.e on I.
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Proof. See [11, Pag. 204, Lemma 8.1].

Lemma 2. Let g ∈ L1
loc(I); for y0 ∈ I fixed, set

v(x) =
∫ x

y0
g(t)dt, x ∈ I.

Then v ∈ C(I) and ∫
I
vϕ′dt = −

∫
I
gϕdt ∀ϕ ∈ C∞0 (I).

Proof. See [11, Pag. 205, Lemma 8.2]

Theorem 3. Let u ∈ W 1,p(I) with 1 ≤ p ≤ ∞, and I bounded or unbounded; then there exists
a function ũ ∈ C(I) such that u = ũ a.e on I, and

ũ(x)− ũ(y) =
∫ x

y
u′(t)dt ∀x, y ∈ I.

Proof. Let y0 ∈ I and define u(x) =
∫ x
y0
u′(t)dt. By Lemma 2 we have∫

I
uϕ′dt = −

∫
I
u′ϕdt ∀ϕ ∈ C∞0 (I).

Thus,
∫
I(u− u)ϕ′ = 0 for all ϕ ∈ C∞0 (I). It follows from Lemma 1 that there exist a constant

C such that u− u = C a.e on I. Then, taking ũ(x) = u(x) + C we finish the proof.

Proposition 4. Let u ∈ Lp(I) with 1 < p ≤ ∞. The following properties are equivalent:

(i) u ∈ W 1,p(I);

(ii) there is a constant C such that∣∣∣∣∫
I
uϕ′dt

∣∣∣∣ ≤ C‖ϕ‖Lp′ (I) ∀ϕ ∈ C∞0 (I)

where 1/p+ 1/p′ = 1.

Furthermore, we can take C = ‖u′‖Lp(I).

Proof. (i)⇒ (ii) follows from the definition of Sobolev Spaces.

(ii)⇒ (i) Define the linear functional

ϕ ∈ C∞0 (I) 7→
∫
I
uϕ′dt

and notice that, since p′ < ∞, C∞0 (I) is dense in Lp
′(I) [See 11, pag. 97, thm. 4.12].

This functional is continuous for the Lp′(I) norm and, therefore, by Hahn-Banach theorem
there exists an extension F defined on Lp′(I). By the Riesz representation theorem there exist
g ∈ Lp(I) such that

F (ϕ) =
∫
I
gϕdt ∀ϕ ∈ Lp′(I).

In particular, ∫
I
uϕ′dt =

∫
I
gϕdt ∀ϕ ∈ C∞0 (I),

thus u ∈ W 1,p(I).
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Proposition 5. A function u ∈ L∞(I) belongs to W 1,∞(I) if and only if there exists a constant
C such that

|u(x)− u(y)| ≤ C|x− y| for a.e. x, y ∈ I.

Proof. If u ∈ W 1,∞(I) we can apply Theorem 3 to obtain:

|u(x)− u(y)| ≤ ‖u′‖L∞|x− y| for a.e. x, y ∈ I.

Conversely, let ϕ ∈ C∞0 (I). Since ϕ has compact support, for |h| small enough the following
integral is well defined: ∫

I
[u(x+ h)− u(x)]ϕ(x)dx.

Moreover, we have that∫
I
[u(x+ h)− u(x)]ϕ(x)dx =

∫
I
u(x)[ϕ(x− h)− ϕ(x)]dx.

Thus, ∣∣∣∣∫
I
u(x)[ϕ(x− h)− ϕ(x)]dx

∣∣∣∣ =
∣∣∣∣∫
I
[u(x+ h)− u(x)]ϕ(x)dx

∣∣∣∣ ≤ C|h|‖ϕ‖L1 .

Dividing by |h| and letting h→ 0 we obtain∣∣∣∣∫
I
uϕ′dt

∣∣∣∣ ≤ C‖ϕ‖L1 ∀ϕ ∈ C∞0 (I).

Thus, by Proposition 4 we conclude that u ∈ W 1,∞(I).

Definition 6. Let v : R→ R and h ∈ R. We define the function τhv by (τhv)(x) = v(x+ h).

Proposition 7. Let u ∈ Lp(R) with 1 < p <∞. The following properties are equivalent:

(i) u ∈ W 1,p(R);

(ii) there exists a constant C such that, for all h ∈ R,

‖τhu− u‖Lp(R) ≤ C|h|.

Moreover, one can choose C = ‖u′‖Lp(R).

Proof. (i)⇒ (ii) By Theorem 3, for all x, h ∈ R we have:

u(x+ h)− u(x) =
∫ x+h

x
u′(t)dt = h

∫ 1

0
u′(x+ sh)ds.

Thus, by Hölder’s inequality we have

|u(x+ h)− u(x)|p ≤ |h|p
∫ 1

0
|u′(x+ sh)|pds.
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Then, ∫
R
|u(x+ h)− u(x)|pdx ≤ |h|p

∫
R

∫ 1

0
|u′(x+ sh)|pdsdx

= |h|p
∫ 1

0

∫
R
|u′(x+ sh)|pdxds

= |h|p
∫ 1

0
‖u′‖pLpds = |h|p‖u′‖pLp(I).

and so we obtain the inequality (ii).

(ii)⇒ (i) Let ϕ ∈ C∞0 (I). For all h ∈ R we have∫
R
[u(x+ h)− u(x)]ϕ(x)dx =

∫
R
u(x)[ϕ(x− h)− ϕ(x)]dx.

Using this equality, Hölder’s inequality and (ii) we conclude∣∣∣∣∫
R
u(x)[ϕ(x− h)− ϕ(x)]dx

∣∣∣∣ ≤ C|h|‖ϕ‖Lp′ (R).

Dividing by |h| and letting h→ 0 we obtain∣∣∣∣∫
R
uϕ′dt

∣∣∣∣ ≤ C‖ϕ‖Lp′ (R).

By Proposition 4 we have that u ∈ W 1,p(R).

Theorem 8 (Extension Theorem). Let 1 ≤ p ≤ ∞. There exists a bounded linear operator
P : W 1,p(I)→ W 1,p(R), called an extension operator, satisfying the following properties:

(i) Pu|I = u ∀u ∈ W 1,p(I);

(ii) ‖Pu‖Lp(R) ≤ C‖u‖Lp(I)∀u ∈ W 1,p(I);

(iii) ‖Pu‖W 1,p(R) ≤ C‖u‖W 1,p(I) ∀u ∈ W 1,p(I).

where C depends only on |I| ≤ ∞.

Proof. See [11, Pag. 209,Thm. 8.6].

Theorem 9. Let u ∈ W 1,p(I) with 1 ≤ p < ∞. Then there exists a sequence (un) in C∞0 (R)
such that un|I → u in W 1,p(I).

Proof. See [11, Pag. 211,Thm. 8.7].

Theorem 10. There exists a constant C (depending only on |I| ≤ ∞) such that

1. ‖u‖L∞(I) ≤ C‖u‖W 1,p(I)∀u ∈ W 1,p(I), ∀1 ≤ p ≤ ∞.

In other words, W 1,p(I) ↪→ L∞(I) with continuous injection for all 1 ≤ p ≤ ∞.

Further, if I is bounded then
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2. the injection W 1,p(I) ↪→ C(I) is compact for all 1 < p ≤ ∞,

3. the injection W 1,1(I) ↪→ Lq(I) is compact for all 1 ≤ q <∞.

Remark 1. To prove this theorem we will need the following result:

Theorem. Let F be a bounded set in Lp(Rn), with 1 ≤ p <∞. Assume that

lim
|h|→0

‖τhf − f‖Lp = 0 uniformly in f ∈ F ,

i.e, for all ε > 0 there exists δ > 0 such that ‖τhf − f‖Lp < ε for all f ∈ F , for all h ∈ Rn with
|h| < δ.

Then the closure of F|Ω in Lp(Ω) is compact for any measurable set Ω ⊂ Rn with finite
measure. (F|Ω denotes the restriction to Ω of the functions in F).

The proof of this theorem can be found in [11, pag. 111, thm. 4.26].

Proof. We’ll begin proving item 1 for I = R; the general case follows from this case and
the extension theorem. Let v ∈ C∞0 (R); if 1 ≤ p < ∞ set G(s) = |s|p−1s. The function
G(v) ∈ C∞(R) and

(G(v))′ = G′(v)v′ = p|v|p−1v′.

Then, for all x ∈ R, we have

|v(x)|p−1v(x) = G(v(x)) =
∫ x

−∞
p|v(t)|p−1v′(t)dt,

thus, using Hölder’s inequality

|v(x)|p ≤ p
∫ x

−∞
|v(t)|p−1|v′(t)|dt

≤ p
(∫

R
|v′(t)|pdt

)1/p
·
(∫

R
|v(t)|(p−1)p′dt

)1/p′

= p‖v′‖Lp(R)‖v‖p−1
Lp(R)

≤ p‖v‖pW 1,p .

and so we can obtain
‖v‖L∞(R) ≤ C‖v‖W 1,p , (2.2)

where C is a universal constant independent of p, because p1/p ≤ e1/e for all p ≥ 1.

Now, given u ∈ W 1,p(R), there exists a sequence (un) in C∞0 (R) such that un → u in
W 1,p(R). Using (2.2) we see that (un) is a Cauchy sequence in L∞(R); thus un → u in L∞(R)
and we obtain the item 1.

Proof of 2. Let B be the unit ball in W 1,p(I), with 1 < p ≤ ∞. For u ∈ B we have

|u(x)− u(y)| =
∣∣∣∣∫ y

x
u′(t)dt

∣∣∣∣ ≤ ‖u′‖Lp(I)|x− y|1/p
′ ≤ |x− y|1/p′ ∀x, y ∈ I. (2.3)

Then, from Arzelà-Ascoli theorem, B has a compact closure in C(I).
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Proof of 3. Let B be the unit ball in W 1,1(I) and P be the extension operator. Define
D = P (B), so that B = D|I := restriction to I of the functions in D. By the Theorem 8 D is
bounded in W 1,1(R); therefore D is also bounded in Lq(R), due to the interpolation inequality,
since it is bounded both in L1(R) and in L∞(R).

By Proposition 7, for every f ∈ D we have

‖τhf − f‖L1(R) ≤ |h|‖f ′‖L1(R) ≤ C|h|,

since D is a bounded subset of W 1,1(R). Thus,∫
R
|τhf − f |qdt =

∫
R
|τhf − f |q−1|τhf − f |dt (2.4)

≤
∫
R
(|τhf |+ |f |)q−1|τhf − f |dt (2.5)

≤ (2‖f‖L∞(R))q−1
∫
R
|τhf − f |dt (2.6)

= (2‖f‖L∞(R))q−1‖τhf − f‖L1(R) ≤ C|h|. (2.7)

Then
‖τhf − f‖Lq(R) ≤ C|h|1/q

and lim|h|→0 ‖τhf −f‖Lq(R) = 0. Consequently, by [11, pag. 111, thm. 4.26] we obtain the desired
result.

Remark 2. Let I be a bounded interval, then W 1,2(I) ↪→ L2(I) is compact.

Indeed, let B be the unit ball in W 1,2(I) and P : W 1,2(I) → W 1,2(R) the extension
operator. Define D = P (B). By Theorem 8 D is bounded in W 1,2(R) and this implies that D
is bounded in L2(R). Using Proposition 7 we have, for all f ∈ D

‖τhf − f‖L2(R) ≤ ‖f ′‖L2(R)|h| ≤ C|h|,

where C is a constant independent of f (C is the constant of the extension operator). Thus
lim|h|→0 ‖τhf − f‖L2(R) = 0; by [11, pag. 111, thm. 4.26] we conclude that the embedding is
compact.

Corollary 11. Suppose that I is an unbounded interval and u ∈ W 1,p(I) with 1 ≤ p <∞. Then

lim
|x|→∞

u(x) = 0.

Proof. See [11, Pag. 214, Corl. 8.9].

Definition 12. Given 1 ≤ p <∞, denote by W 1,p
0 (I) the closure of C∞0 (I) in W 1,p(I). Set

H1
0 (I) = W 1,2

0 (I).

The spaceW 1,p
0 (I) is equipped with the norm ofW 1,p(I), and the space H1

0 (I) is equipped
with the inner product of H1(I). The space W 1,p

0 (I) is a separable Banach space. Moreover, it
is reflexive for p > 1; the space H1

0 (I) is a separable Hilbert space.
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Proposition 13 (Poincaré’s inequality). Suppose I is a bounded interval. The there exists a
constant C (depending on |I| <∞) such that

‖u‖W 1,p(I) ≤ C‖u′‖Lp(I) ∀u ∈ W 1,p
0 (I).

In other words, on W 1,p
0 (I), the quantity ‖u′‖Lp(I) is a norm equivalent to the W 1,p(I) norm.

Proof. See [11, Pag. 218, Prop. 8.13].
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3 HÖLDER’S SPACES

In order to obtain the solution of the proposed problem in chapter 4 we will need to
juggle between multiple normed spaces called Hölder spaces; this will be useful because there are
certain embedding theorems among them, providing a tool to obtain converging subsequences.
For more information concerning Hölder Spaces see [12].

3.1 DEFINITION

Let Ω be an open subset of Rn and f : Ω→ R a k−differentiable function in x ∈ Ω. For
γ = (γ1, . . . , γn) ∈ Nn, we define |γ| = ∑n

i=1 γi and

Dγf(x) = ∂|γ|f

∂xγnn ∂x
γn−1
n−1 · · · ∂x

γ1
1

(x) ∀|γ| ≤ k.

Definition 14. (a) We say that f is a Hölder continuous function with exponent λ, or
λ−Hölder continuous, in the set Ω when f satisfies

[f ]λ(Ω) := sup
x,y∈Ω
x 6=y

|f(x)− f(y)|
|x− y|λ

< +∞;

in this case, we say that f ∈ Cλ(Ω).

(b) We define:

Ck(Ω) = {f ∈ Ck(Ω);Dγf is bounded and uniformly continuous in Ω ∀|γ| ≤ k}

with ‖f‖Ck(Ω) = max|γ|≤k ‖Dγf‖L∞(Ω); and

Ck,λ(Ω) = {f ∈ Ck(Ω);Dγf ∈ Cλ(Ω) ∀|γ| ≤ k}.

The sets Ck,λ(Ω) are vector spaces called Hölder Spaces; they are Banach with the norm

‖f‖Ck,λ(Ω) = ‖f‖Ck(Ω) + max
|γ|≤k

[Dγf ]λ(Ω).

Remark 3. We may use the notation | · |k+λ for the norm ‖ · ‖Ck,λ(Ω).

3.2 EMBEDDING THEOREM

Theorem 15 (Arzelà-Ascoli). Let K be a compact metric space and let H be a bounded subset
of C(K). Assume that H is uniformly equicontinuous, that is,

∀ε > 0 ∃δ > 0 such that d(x1, x2) < δ ⇒ |f(x1)− f(x2)| < ε ∀f ∈ H.

Then the closure of H in C(K) is compact.

Proof. See [13, Pag. 290, Thm. 47.1]
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Remark 4. The proof of the following theorem was extracted from [14, Pag. 175, Thm. 9.6];
currently this material has no English translation.

Theorem 16. Let Ω ⊂ Rn be an open set. Then, for all k ∈ N and 0 < λ < β ≤ 1 we have the
following continuous embeddings:

Ck+1(Ω) ↪→ Ck(Ω) (3.1)
Ck,λ(Ω) ↪→ Ck(Ω) (3.2)
Ck,β(Ω) ↪→ Ck,λ(Ω). (3.3)

If Ω is bounded, then the last two embeddings are compact; moreover if Ω is convex and bounded,
then all embeddings are compact.

If Ω is convex, there are two more embeddings:

Ck+1(Ω) ↪→ Ck,1(Ω) (3.4)
Ck+1(Ω) ↪→ Ck,λ(Ω), (3.5)

the last one been compact if Ω is also bounded.

Proof. First we will show the existence of the continuous embeddings. From the clear inequalities

‖f‖Ck(Ω) ≤ ‖f‖Ck+1(Ω),

‖f‖Ck(Ω) ≤ ‖f‖Ck,λ(Ω),

we establish the embeddings (3.1) and (3.2).

Now notice that, for x, y ∈ Ω, 0 < λ ≤ β and |γ| ≤ k:

If 0 < |x− y| ≤ 1 then |x− y|λ ≥ |x− y|β. Thus

sup
x,y∈Ω

0<|x−y|≤1

|Dγf(x)−Dγf(y)|
|x− y|λ

≤ sup
x,y∈Ω
x 6=y

|Dγf(x)−Dγf(y)|
|x− y|β

= [Dγf ]β(Ω).

If |x− y| ≥ 1 then |x− y|λ ≥ 1. Thus

sup
x,y∈Ω
|x−y|≥1

|Dγf(x)−Dγf(y)|
|x− y|λ

≤ 2‖Dγf‖C0(Ω),

so we conclude that ‖f‖Ck,λ(Ω) ≤ 3‖f‖Ck,β(Ω).

To obtain (3.4) and (3.5), suppose that Ω is convex. Let f ∈ Ck+1(Ω); given x, y ∈ Ω
and |γ| ≤ k, by the Mean Value Theorem there exists z ∈ Ω belonging to the segment line
joining x and y such that

Dγf(x)−Dγf(y) = ∇Dγf(z)(x− y).
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Then,
|Dγf(x)−Dγf(y)| ≤ ‖f‖Ck+1(Ω)|x− y|

for all x, y ∈ Ω and for all |γ| ≤ k, implying that f ∈ Ck,1(Ω) and

‖f‖Ck,1(Ω) ≤ ‖f‖Ck+1(Ω).

The embedding (3.5) follows from (3.3) and (3.4).

Now we will address the stated compactness. Assume that Ω is bounded; we start
proving that the embedding (3.2) is compact for the case k = 0. Let (fj) be a bounded sequence
in C0,λ(Ω) = Cλ(Ω), then there exist M > 0 such that ‖fj‖Cλ(Ω) ≤M for all j. Then

|fj(x)| ≤M for all x ∈ Ω and for all j.

Thus (fj) is uniformly bounded and

|fj(x)− fj(y)| ≤M |x− y|λ ∀x, y ∈ Ω and ∀j.

Therefore the sequence (fj) is equicontinuous. By the Arzelà-Ascoli Theorem, (fj) has a
converging subsequence in C0(Ω); this establish the compactness of the embedding (3.2) in the
case k = 0. For k > 0, if (fj) is a bounded sequence in Ck,λ(Ω), then it is a bounded sequence
in C0,λ(Ω). By the previous case (k = 0) (fj) has a converging subsequence in C0,λ(Ω) (that we
still denote by (fj)); thus there exists f ∈ C0(Ω) such that fj → f in C0(Ω). Notice that, for
|γ| = 1, (Dγfj) is also bounded in C0(Ω); then there exists a subsequence of (fj) (that we still
denote by (fj)) and f 1

γ ∈ C0(Ω), such that Dγfj → f 1
γ in C0(Ω). Thus f 1

γ = Dγf , because the
convergences are uniform. Continuing this process of extracting subsequences, one concludes
that, for all |γ| ≤ k, Dγfj → Dγf in C0(Ω). Meaning that fj → f in Ck(Ω), proving the
compactness of the embedding (3.2).

To obtain the compactness of (3.3) we’ll use the compactness of (3.2); notice that, if (fj)
is a bounded sequence in Ck,β(Ω), say ‖fj‖Ck,β(Ω) ≤M , then we have:

|Dγfj(x)−Dγfj(y)|
|x− y|λ

=
(
|Dγfj(x)−Dγfj(y)|

|x− y|β

)λ
β

· |Dγfj(x)−Dγfj(y)|1−
λ
β

≤M
λ
β |Dγfj(x)−Dγfj(y)|1−

λ
β .

Thus,
[Dγfj]λ(Ω) ≤ 21−λ

βM
λ
β ‖Dγfj‖

1−λ
β

C0(Ω).

Using (3.2) one obtains a converging subsequence of (fj) in Ck(Ω). The above inequality implies
that, each and every on of the partial derivatives of this subsequence converges in C0,λ(Ω). Then
this subsequence converges in Ck,λ(Ω). Finally, if Ω is convex and bounded, the compactness
of (3.1) and (3.5) follows from the composition of the continuous embedding (3.4) with the
compact embeddings (3.2) and (3.3) for the case λ = 1:

Ck+1(Ω) ↪→ Ck,1(Ω) ↪→ Ck(Ω)︸ ︷︷ ︸
compact

Ck+1(Ω) ↪→ Ck,1(Ω) ↪→ Ck,λ(Ω)︸ ︷︷ ︸
compact

.



27

4 MAIN PROBLEM

This chapter deals with the main purpose of this work:

Theorem (Main problem). Consider the equation−(A(u)u′)′(t) + u(t) = λa1(t)|u(t)|q−1 + |u(t)|p−1 + g(|u′(t)|), in R

limx→±∞ u(x) = 0.
(4.1)

With:

(H1) 1 < q < 2 < p < +∞ and a1 ∈ Ls(R) ∩ C(R), s = 2
2−q a positive even function;

(H2) A : R→ R a Lipschitz, smooth (at least C1(R)), nondecreasing function satisfying:

∃ γ ∈ (0, 1) such that 0 < γ ≤ A(t) ∀t ∈ R;

(H3) g : R→ R a continuous function satisfying:

0 ≤ sg(s) ≤ |s|θ for all s ∈ R, where 2 < θ ≤ 3. (4.2)

Then there exist λ∗ > 0 such that, for all λ ∈ (0, λ∗), problem (4.1) has an even, positive and
C2(R) solution.

To tackle the problem we reduced it to a simpler one: first obtain a solution to functions
defined on an interval (−n, n), with n ∈ N. From there we were able to infer the existence of a
solution to (4.1).

4.1 SOLUTION IN A BOUNDED INTERVAL

Consider the problem−(A(u)u′)′(t) + u(t) = λa1(t)|u(t)|q−1 + |u(t)|p−1 + g(|u′(t)|), in (−n, n)

u(n) = u(−n) = 0.
(Pn)

With the same set of hypothesis (H1), (H2) and (H3).

Remark 5. We will use the notation ‖ ·‖W 1,2 for the usual norm of H1
0 and for (‖u‖L2 +‖u′‖L2) or

(‖u‖L2 + ‖u′‖L2)2. Since these norms are equivalent the results will not change but the constants
may. In most of the cases ‖u‖W 1,2 = ‖u‖L2 + ‖u′‖L2 . We also emphasize that, when the context
is clear, we will omit the domain in norms such as those from the spaces Lp(−n, n).

Definition 17. We will call w ∈ H1
0 (−n, n) a weak solution of (Pn) if∫ n

−n
A(w)w′v′ +

∫ n

−n
wv =

∫ n

−n
λa1|w|q−1v +

∫ n

−n
|w|p−1v +

∫ n

−n
g(|w′|)v

for all v ∈ H1
0 (−n, n).
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Remark 6. The following construction of the sequence (fk) is due to [5].

Define G(s) =
∫ s

0 g(t)dt so that G is differentiable and G′(s) = g(s). By means of G we
shall construct a sequence of approximations of g by Lipschitz functions fk : R −→ R. Let

fk(s) =



−k[G(−k − 1
k
)−G(−k)], if s ≤ −k

−k[G(s− 1
k
)−G(s)], if − k ≤ s ≤ −1

k

k2s[G(−2
k

)−G(−1
k

)], if −1
k
≤ s ≤ 0

k2s[G( 2
k
)−G( 1

k
)], if 0 ≤ s ≤ 1

k

k[G(s+ 1
k
)−G(s)], if 1

k
≤ s ≤ k

k[G(k + 1
k
)−G(k)], if s ≥ k

(4.3)

Theorem 18 (Lemma 1 from [6]). The sequence fk as defined above satisfies:

1. sfk(s) ≥ 0 for all s ∈ R;

2. for all k ∈ N there is a constant c(k) such that |fk(ξ) − fk(η)| ≤ c(k)|ξ − η|, for all
ξ, η ∈ R;

3. fk converges uniformly to g in bounded sets.

Remark 7. From the definition of the sequences fk, and the fact that sign(g(s)) = sign(s)∀s ∈ R,
it follows without difficulties that 1 is true. In [6, Pag. 6, Prop. 5] one can find a detailed proof
of 2 , so we will only prove 3 by an alternative argumentation.

Proof. Let m ∈ N, to prove 3 we only need to prove that it holds in intervals such as (−m,m).
We may also assume that k > m. Consider the following cases:

Case I. −m < s ≤ −1
k

Here we have that

|fk(s)− g(s)| =
∣∣∣∣−k [G(s− 1

k

)
−G(s)

]
− g(s)

∣∣∣∣ =
∣∣∣∣∣∣
[
G(s− 1

k
)−G(s)

]
−1
k

− g(s)
∣∣∣∣∣∣ .

Then, by the Fundamental Theorem of Calculus we conclude that fk → g uniformly.

Case II. −1
k
≤ s ≤ 0

Since g(0) = 0 and g is continuous, given ε > 0 there exists δ > 0 such that |t| < δ

implies |g(t)| < ε/2. Let k0 ∈ N be such that k0 > m and k0 > 2/δ. Then, for k > k0

|fk(s)− g(s)| =
∣∣∣∣k2s

[
G
(−2
k

)
−G

(−1
k

)]
− g(s)

∣∣∣∣
≤ k2|s|

∣∣∣∣∣
∫ −2/k

−1/k
|g(t)|dt

∣∣∣∣∣+ |g(s)|

≤ k2( 1
k2 ) ε2 + ε

2 = ε ∀s ∈ [−1
k
, 0].

Proving the desired convergence.

For the cases 0 ≤ s ≤ 1
k
and 1

k
≤ s < m the arguments are similar.
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The next theorem is our comparison principle. It will be useful to guarantee that, after
applying the Galerkin Method, our candidate solution to problem (Pn) won’t be the identical
null solution. See Proposition 31 for information about its usage.

Theorem 19 (Theorem 3.1 from [1]). Let ψ : (0,+∞)→ R be a continuous function such that
the mapping (0,+∞) 3 s 7→ ψ(s)

s
is strictly decreasing and ρ > 0. Suppose that there exist even

functions v, w ∈ C2(−ρ, ρ) ∩ C[−ρ, ρ] such that:

1. (A(w)w′)′ − w + ψ(w) ≤ 0 ≤ (A(v)v′)− v + ψ(v) in (−ρ, ρ);

2. v, w ≥ 0 in (−ρ, ρ) and v(ρ) ≤ w(ρ);

3. {x ∈ (−ρ, ρ); v(x) = 0} and {x ∈ (−ρ, ρ);w(x) = 0} have null measure in R;

4. v′ · w′ ≥ 0 in (−ρ, ρ);

5. v′, w′ ∈ L∞(−ρ, ρ).

Then v ≤ w in (−ρ, ρ).

See [1, Pag. 2419, Thm 3.1] for the proof; although slight different statement, defining
ψ(w(s))
w(s) = 0 for s ∈ {x ∈ (−ρ, ρ);w(x) = 0} is sufficient to completely adapt the demonstration

gave in [1] for the above formulation.

4.2 APPROXIMATE PROBLEM

Let ψ ∈ L2(−n, n) be an even and positive function. In order to solve (Pn) we will focus
our attention on the approximate problem−(A(u)u′)′(t) + u(t) = λa1(t)|u(t)|q−1 + |u(t)|p−1 + fk(|u′(t)|) + ψ

k
, in (−n, n)

u(n) = u(−n) = 0.
(P k

n )

which carries significant information about (Pn), as result of the properties of fk. This approach
aims at constructing a sequence of solutions for (P k

n ) that will, eventually, converge to a solution
of (Pn). In order to obtain such sequence, we will use the Galerkin method together with the
following Lemma 20

Remark 8. We observe that the usage of the Strauss Approximation on a term involving u′ is a
novelty of our work.

Lemma 20. Let F : RN → RN be a continuous function such that 〈F(x), x〉 ≥ 0 for all x ∈ RN

with ‖x‖RN = r. Then there exist x0 in the closed ball B[0, r] such that F(x0) = 0.

Proof. See [15, Chap. 5, Thm. 5.2.5].

Lemma 21 (Lemma 2 from [6]). Let g : R→ R be a continuous function satisfying (4.2). Then
the sequence fk of Theorem 18 satisfies
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1. For all k ∈ N, 0 ≤ sfk(s) ≤ C1|s|θ for every |s| ≥ 1
k
;

2. for all k ∈ N, 0 ≤ sfk(s) ≤ C1|s|2 for every |s| ≤ 1
k
.

where C1 is a constant independent of k.

For the proof of this result see [6, Pag. 8, Lemma 2].

Definition 22. A function w ∈ H1
0 (−n, n) is called an E-weak solution of (P k

n ) if w is an even
function satisfying∫ n

−n
A(w)w′ϕ′ +

∫ n

−n
wϕ =

∫ n

−n
λa1|w|q−1ϕ+

∫ n

−n
|w|p−1ϕ+

∫ n

−n
fk(|w′|)ϕ+

∫ n

−n

ψ

k
ϕ

for all ϕ ∈ E1
0(−n, n) = {u ∈ H1

0 (−n, n);u(t) = u(−t) a.e }.

Definition 23. We will call w ∈ H1
0 (−n, n) a weak solution of (P k

n ) if∫ n

−n
A(w)w′v′ +

∫ n

−n
wv =

∫ n

−n
λa1|w|q−1v +

∫ n

−n
|w|p−1v +

∫ n

−n
fk(|w′|)v +

∫ n

−n

ψ

k
v

for all v ∈ H1
0 (−n, n).

Lemma 24 (Lemma 4.1 from [1]). Let w ∈ H1
0 (−n, n) be an E-weak solution of (P k

n ). Then w
is a weak solution of (P k

n ).

Proof. First we will prove that w is a weak solution in (−n, 0) ∪ (0, n). Let ζ ∈ C∞0 (0, n) and
define:

ζ(t) =


ζ(t), if t ∈ (0, n);

0, if t = 0;

ζ(−t), if t ∈ (−n, 0).

Thus ζ ∈ E1
0(−n, n) and∫ n

−n
A(w)w′ζ ′ +

∫ n

−n
wζ =

∫ n

−n
λa1|w|q−1ζ +

∫ n

−n
|w|p−1ζ +

∫ n

−n
fk(|w′|)ζ +

∫ n

−n

ψ

k
ζ.

Since w,ψ, a1 and ζ are even functions, all the integrands above are also even functions; so the
above equality can be rewritten as∫ n

0
A(w)w′ζ ′ +

∫ n

0
wζ =

∫ n

0
λa1|w|q−1ζ +

∫ n

0
|w|p−1ζ +

∫ n

0
fk(|w′|)ζ +

∫ n

0

ψ

k
ζ.

Using that ζ|(0,n) = ζ, from the above equality one can conclude that w is a weak solution in
(0, n). Similarly we also obtain that w is a weak solution in (−n, 0).

Given ϕ ∈ H1
0 (−n, n), let ψ̃ ∈ E1

0(−n, n) be such that ψ̃(0) = ϕ(0). Defining

Φ1(t) =

ϕ(t)− ψ̃(t), if t ∈ [0, n)

0, if t ∈ (−n, 0]
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Φ2(t) =

0, if t ∈ [0, n)

ϕ(t)− ψ̃(t), if t ∈ (−n, 0]

we have that Φ̃1 := Φ1|(0,n) ∈ H1
0 (0, n) and Φ̃2 := Φ2|(−n,0) ∈ H1

0 (−n, 0). Thus∫ n

0
A(w)w′Φ̃1

′ +
∫ n

0
wΦ̃1 =

∫ n

0
λa1|w|q−1Φ̃1 +

∫ n

0
|w|p−1Φ̃1 +

∫ n

0
fk(|w′|)Φ̃1 +

∫ n

0

ψ

k
Φ̃1. (4.4)

∫ 0

−n
A(w)w′Φ̃2

′+
∫ 0

−n
wΦ̃2 =

∫ 0

−n
λa1|w|q−1Φ̃2 +

∫ 0

−n
|w|p−1Φ̃2 +

∫ 0

−n
fk(|w′|)Φ̃2 +

∫ 0

−n

ψ

k
Φ̃2. (4.5)

Since ψ̃ ∈ E1
0(−n, n) we also have that∫ n

−n
A(w)w′ψ̃′ +

∫ n

−n
wψ̃ =

∫ n

−n
λa1|w|q−1ψ̃ +

∫ n

−n
|w|p−1ψ̃ +

∫ n

−n
fk(|w′|)ψ̃ +

∫ n

−n

ψ

k
ψ̃. (4.6)

Combining (4.4),(4.5) and (4.6) we conclude∫ n

−n
A(w)w′ϕ′ +

∫ n

−n
wϕ =

∫ n

−n
λa1|w|q−1ϕ+

∫ n

−n
|w|p−1ϕ+

∫ n

−n
fk(|w′|)ϕ+

∫ n

−n

ψ

k
ϕ, (4.7)

i.e, w is a weak solution.

Proposition 25. Properties of E1
0(−n, n) :

(I) it is a Hilbert Space;

(II) it is separable;

(III) is has an orthonormal basis.

Proof. See Appendix A.

Remark 9. For information concerning orthonormal basis in Hilbert spaces, see [16].

Let E1
0(−n, n) = {u ∈ H1

0 (−n, n);u(t) = u(−t) a.e } and (el)∞l=1 be an orthonormal basis
of E1

0(−n, n).

Define VM = span{e1, . . . , eM}; then for every u ∈ VM there exist ξ1, . . . , ξM in R such
that u = ∑M

i=1 ξiei. By means of T : VM → RM , T (u) = T (∑M
i=1 ξiei) = (ξ1, . . . , ξM), which is a

linear isomorphism and preserve norm, we may define F : RM → RM such that

F(ξ) = (F1(ξ), . . . ,FM(ξ)) (4.8)

and

Fj(ξ) =
∫ n

−n
A(u)u′e′j +

∫ n

−n
uej −

∫ n

−n
λa1|u|q−1ej −

∫ n

−n
|u|p−1ej −

∫ n

−n
fk(|u′|)ej −

∫ n

−n

ψ

k
ej

where j ∈ {1, . . . ,M} and u = T−1(ξ), for all ξ ∈ RM .

Lemma 26. The function F is continuous.



32

Proof. Given ξ = (ξ1, . . . , ξM ) ∈ RM , let (ξl)∞l=1 be a sequence in RM such that ‖ξl − ξ‖RM → 0.
By means of T we can identify T−1(ξ) = u = ∑M

i=1 eiξi and T−1(ξl) = ul = ∑M
i=1 eiξ

l
i. Since T is

isometry we have that ‖ul − u‖W 1,2 → 0. That is, ‖ul − u‖L2 → 0 and ‖u′l − u′‖L2 → 0. Taking
a subsequence if necessary, we may assume that

ul(x)→ u(x) a.e on (−n, n),
u′l(x)→ u′(x) a.e on (−n, n),

and |ul(x)| ≤ h1(x), |u′l(x)| ≤ h2(x) a.e on (−n, n), with h1, h2 ∈ L2(−n, n). Let j ∈
{1, 2, . . . ,M}, we will prove that fj(ξl)→ fj(ξ).∣∣∣∣∫ n

−n
A(ul)u′le′j −

∫ n

−n
A(u)u′e′j

∣∣∣∣ ≤ ∫ n

−n
(|u′l||A(ul)− A(u)|+ |A(u)||u′l − u′|) |e′j|, (4.9)

since |u′l(x)||A(ul(x))− A(u(x))||e′j(x)| → 0 a.e and |A(u(x))||u′l(x)− u′(x)||e′j(x)| → 0 a.e, by
the Dominated Convergence Theorem (D.C.T) (4.9) tends to zero as l→ +∞.∣∣∣∣∫ n

−n
ulej −

∫ n

−n
uej

∣∣∣∣ ≤ ∫ n

−n
|ul − u||ej| → 0 [by (D.C.T).] (4.10)

∣∣∣∣∫ n

−n
[λa1(|ul|q−1 − |u|q−1) + (|ul|p−1 − |u|p−1) + (fk(u′l)− fk(u′))]ej

∣∣∣∣
≤
∫ n

−n
λ|a1|

∣∣∣|ul|q−1 − |u|q−1
∣∣∣ |ej|+ ∫ n

−n

∣∣∣|ul|p−1 − |u|p−1
∣∣∣ |ej|

+
∫ n

−n
|fk(|u′l|)− fk(|u′|)| |ej|, (4.11)

since that |ul|q−1 → |u|q−1 a.e and |ul|p−1 → |u|p−1 a.e, (D.C.T) implies that the first two
integrals above converges to zero. Using the second item of Theorem 18, we have∫ n

−n
|fk(|u′l|)− fk(|u′|)| |ej| ≤

∫ n

−n
c(k)|u′l − u′||ej|. (4.12)

Then, by (D.C.T), (4.12) converges to 0 as l→ +∞.

These estimations show us that for every subsequence (ξlk) of (ξl), there exist a subse-
quence (ξlkn ) of (ξlk) that Fj(ξlkn )→ Fj(ξ). Therefore Fj(ξl)→ Fj(ξ).

Proposition 27. There exist λ∗ > 0 and k∗ ∈ N for which the problem (P k
n ) admits a nontrivial

weak solution for every λ ∈ (0, λ∗) and k ≥ k∗.

Proof. Our aim is to use Lemma 20, with the function F defined in (4.8). Given ξ ∈ RM , we
have that

〈F(ξ), ξ〉 =
∫ n

−n
A(u)|u′|2+

∫ n

−n
|u|2−

∫ n

−n
λa1|u|q−1u−

∫ n

−n
|u|p−1u−

∫ n

−n
fk(|u′|)u−

∫ n

−n

ψ

k
u. (4.13)
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In the following we will estimate these integrals. We have that∫ n

−n
λa1|u|q−1u ≤ λ‖a1‖Ls(R)‖u‖qL2 ≤ λC2‖u‖qW 1,2 , (4.14)∫ n

−n

ψ

k
u ≤
‖ψ‖L2(−n,n)‖u‖W 1,2

k
. (4.15)

Now let ũ : R→ R be the extension by zero of u, then∫ n

−n
|u|p−1u ≤

∫ n

−n
|u|p =

∫ n

−n
|u|2|u|p−2 (4.16)

≤ ‖ũ‖p−2
L∞(R)

∫ n

−n
|u|2 (4.17)

= ‖ũ‖p−2
L∞(R)‖u‖

2
L2 (4.18)

≤ Cp−2‖u‖p−2
W 1,2‖u‖2

W 1,2 = Cp−2‖u‖pW 1,2 . (4.19)

Where C is the constant for the embedding W 1,2(R) ↪→ L∞(R).

Define

Ω> = {s ∈ (−n, n); |u′(s)| ≥ 1
k
} and Ω< = {s ∈ (−n, n); 0 < |u′(s)| ≤ 1

k
}.

Then ∫ n

−n
fk(|u′|)u =

∫
Ω>
fk(|u′|)u+

∫
Ω<
fk(|u′|)u.

Notice that by Lemma 21,∫
Ω<
fk(|u′|)u ≤

∫
Ω<
C1|u′||u| ≤

∫
Ω<

C1

k
|u|

≤ C1

k

∫ n

−n
|u| ≤ C1(2n)1/2

k
‖u‖L2

≤ C1(2n)1/2

k
‖u‖W 1,2 .

To estimate the integral over Ω>, consider the following cases :
Case 1. 2 < θ < 3.

Using Lemma 21, we have∫
Ω>
fk(|u′|)u ≤

∫
Ω>
C1|u′|θ−1|u| ≤

∫ n

−n
C1|u′|θ−1|u|

≤ C1

(∫ n

−n
|u|w

) 1
w
(∫ n

−n
|u′|2

) θ−1
2

≤ C1

(∫
R
|ũ|2|ũ|w−2

) 1
w

‖u′‖θ−1
L2

≤ C1‖ũ‖
w−2
w

L∞(R)‖u‖
2
w

L2‖u′‖θ−1
L2

≤ C1C
w−2
w ‖u‖

w−2
w

W 1,2‖u‖
2
w

W 1,2‖u‖θ−1
W 1,2 = C1C

w−2
w ‖u‖θW 1,2 .
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Where w =
(

2
θ−1

)′
= 2

3−θ > 2.
Case 2. θ = 3. ∫

Ω>
fk(|u′|)u ≤

∫
Ω>
C1|u′|2|u| ≤

∫ n

−n
C1|u′|2|u|

≤ C1‖ũ‖L∞(R)‖u′‖2
L2 ≤ C1C‖u‖W 1,2‖u‖2

W 1,2

= C1C‖u‖3
W 1,2 .

By the exposed necessity to consider the cases 2 < θ < 3 and θ = 3, we shall estimate (4.13) in
two cases as well.
Case 1. 2 < θ < 3.

〈F(ξ), ξ〉 ≥γ‖u‖2
W 1,2 − λC2‖u‖qW 1,2 − Cp−2‖u‖pW 1,2

− C1C
w−2
w ‖u‖θW 1,2 −

(
C1(2n)1/2

k
+ ‖ψ‖L

2(−n,n)

k

)
‖u‖W 1,2 .

Define Zk : R+ → R by

Zk(x) = γx2 − λC2x
q − Cp−2xp − C1C

w−2
w xθ −

(
C1(2n)1/2

k
+ ‖ψ‖L

2(−n,n)

k

)
x.

We would like to find x1 ∈ R+
∗ such that

γx2
1 − Cp−2xp1 − C1C

w−2
w xθ1 >

x2
1

2 γ (4.20)

or equivalently,
γ

2 > Cp−2xp−2
1 + C1C

w−2
w xθ−2

1 .

For this, if we take

δ1 = min

(

γ

4Cp−2

)1/(p−2)
,

(
γ

4C1C
w−2
w

)1/(θ−2)
 ,

then for 0 < x1 < δ1 (4.20) is true. Consequently,

Zk(x1) ≥ x2
1

2 γ − λC2δ
q
1 −

(
C1(2n)1/2

k
+ ‖ψ‖L

2(−n,n)

k

)
δ1.

Define ρ1 = x2
1

2 γ − λC2δ
q
1. We will adjust λ > 0 so that ρ1 > 0; for this if ρ1 > 0 it would imply

that
x2

1
2 γ − λC2δ

q
1 > 0⇔ x2

1γ

2C2δ
q
1
> λ.

Take Λ1 = x2
1γ

2C2δ
q
1
and 0 < λ < Λ1. Thus ρ1 > 0 and we can find k1 ∈ N such that for k > k1,

ρ1 >
(
C1(2n)1/2

k
+ ‖ψ‖L2(−n,n)

k

)
δ1 > 0. Therefore, for 0 < x1 < δ1, 0 < λ < Λ1 and k > k1

Zk(x1) > 0,

and so, with ‖u‖W 1,2 = x1,
〈F(ξ), ξ〉 > 0. (4.21)
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Case 2. θ = 3.

〈F(ξ), ξ〉 ≥γ‖u‖2
W 1,2 − λC2‖u‖qW 1,2 − Cp−2‖u‖pW 1,2

− C1C‖u‖3
W 1,2 −

(
C1(2n)1/2

k
+ ‖ψ‖L

2(−n,n)

k

)
‖u‖W 1,2 .

Following the same ideas as in Case 1, take

δ2 = min
{(

γ

4Cp−2

)1/(p−2)
,
(

γ

4C1C

)}
.

For 0 < x2 < δ2 and ρ2 = x2
2γ

2 − λC2δ
q
2, with 0 < λ <

x2
2γ

2C2δ
q
2

:= Λ2, we have ρ2 > 0. Let k2 ∈ N

be such that k > k2 ⇒ ρ2 >
(
C1(2n)1/2

k
+ ‖ψ‖L2(−n,n)

k

)
δ2 > 0. Then, for ‖u‖W 1,2 = x2 we have

〈F(ξ), ξ〉 > 0. (4.22)

To properly use Lemma 20, let us take 0 < r < min{δ1, δ2}, 0 < λ < λ∗ := min{Λ1,Λ2}
and k > k∗ := max{k1, k2}. In this way, for ||u||W 1,2 = r, we conclude that 〈F(ξ), ξ〉 > 0
independent of θ. By Lemma 20, there exists yM ∈ B[0, r] such that F(yM) = 0 that is,
identifying vM = T−1(yM), for all j ∈ {1, . . . ,M}

∫ n

−n
A(vM)v′Me′j +

∫ n

−n
vMej = (4.23)

=
∫ n

−n
λa1|vM |q−1ej +

∫ n

−n
|vM |p−1ej +

∫ n

−n
fk(|v′M |)ej +

∫ n

−n

ψ

k
ej.

Therefore (4.23) holds for all ϕ ∈ VM , because {e1, . . . , eM} is a basis of VM .

Remark 10. Notice that our choice of r does not depend on M ,n or k. This free determination
of r will be useful further down in the argumentation, because using the embedding W 1,2(R) ↪→
L∞(R) we will be able to obtain an uniform upper bound, in the norm of L∞(R), for the
sequence of solutions of the problem (P k

n ). Then this upper bound will naturally be transferred
to also bound the sequence of solution of (Pn).

Since ‖vM‖W 1,2 ≤ r there is v0 ∈ E1
0(−n, n) such that vM ⇀ v0 in H1

0 (−n, n). By the
compact embedding W 1,2(−n, n) ↪→ L2(−n, n) we conclude vM → v0 in L2(−n, n). Our goal is
to show that v0 is a weak solution of (P k

n ). Let ΓM : VM → V ∗M and BM : VM → V ∗M be defined
by

〈ΓM(v), ϕ〉 =
∫ n

−n
A(v)v′ϕ′ (4.24)

and (4.25)

〈BM(v), ϕ〉 =
∫ n

−n

(
−v + λ|v|q−1 + |v|p−1 + fk(|v′|) + ψ

k

)
ϕ.
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Hence, 〈ΓM(vM)−BM(vM), ϕ〉 = 0 for all ϕ ∈ VM .

Denoting PM : E1
0(−n, n) → VM the projection of E1

0(−n, n) onto VM ,(that is, if u =∑∞
i=1 αiei then PM(u) = ∑M

i=1 αiei) we have

〈ΓM(vM)−BM(vM), vM − PMv0〉 = 0,

so

〈ΓM(vM), vM − PMv0〉 = 〈BM(vM), vM − PMv0〉 = (4.26)

=
∫ n

−n

(
−vM + λ|vM |q−1 + |vM |p−1 + fk(|v′M |) + ψ

k

)
(vM − PMv0).

Letting M →∞ one can see without difficulties that 〈ΓM(vM), vM − PMv0〉 → 0 (see Appendix
A). This convergence allows us to prove the following

Lemma 28. vM → v0 strongly, i.e in the norm of H1
0 (−n, n).

Remark 11. The idea to consider the operators ΓM and BM was an inspiration from the
arguments presented in [17].

Proof. The limit ‖vM −v0‖L2(−n,n) → 0 has been established before,thus we will focus our efforts
demonstrating the same for ‖v′M − v′0‖L2(−n,n). Let ΦM ,Φ,ΨM , ζM ∈ (E1

0(−n, n))∗ be given by

ΦM(w) =
∫ n

−n
A(vM)v′0w′ (4.27)

Φ(w) =
∫ n

−n
A(v0)v′0w′ (4.28)

ΨM(w) =
∫ n

−n
A(vM)PMv′0w′ (4.29)

ζM(w) =
∫ n

−n
A(v0)PMv′0w′. (4.30)

Then, by a straightforward calculation, (see Appendix A), |ΦM − Φ| → 0,|ΨM − ΦM | → 0
and |ζM − Φ| → 0 in (E1

0(−n, n))∗. Thus |ΨM − ζM | → 0 in (E1
0(−n, n))∗, since |ΨM − ζM | ≤

|ΨM − ΦM | + |ΦM − Φ| + |Φ − ζM |. Writing ΨM = (ΨM − ζM) + ζM yields that ΨM → Φ in
(E1

0(−n, n))∗. Remembering the weak convergence vM ⇀ v0 one can conclude (vM − PMv0) ⇀ 0
in E1

0(−n, n) because for all f ∈ (E1
0(−n, n))∗

|f(vM)− f(PMv0)| ≤ |f(vM)− f(v0)|+ ‖f‖‖v0 − PMv0‖W 1,2 .

Consequently, letting M →∞, ΨM(vM − PMv0)→ Φ(0) = 0. This means that∫ n

−n
A(vM)PMv′0(v′M − PMv′0)→ 0. (4.31)

Also, rewriting (4.26) ∫ n

−n
A(vM)v′M(v′M − PMv′0)→ 0 asM →∞. (4.32)
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Therefore, from (4.32)–(4.31)∫ n

−n
A(vM)(v′M − PMv′0)2 → 0 asM →∞. (4.33)

Since A(x) ≥ γ > 0 for all x ∈ R we conclude ‖v′M − PMv′0‖L2(−n,n) → 0 as M → ∞. Then
‖v′M−v′0‖L2(−n,n) → 0 as result of ‖v′M−v′0‖L2(−n,n) ≤ ‖v′M−PMv′0‖L2(−n,n) +‖v′0−PMv′0‖L2(−n,n),
proving the Lemma.

We know that for every ϕ ∈ VM∫ n

−n
A(vM)v′Mϕ′ +

∫ n

−n
vMϕ = (4.34)

=
∫ n

−n
λa1|vM |q−1ϕ+

∫ n

−n
|vM |p−1ϕ+

∫ n

−n
fk(|v′M |)ϕ+

∫ n

−n

ψ

k
ϕ.

By the previous lemma, taking a subsequence if necessary, we may assume that v′M (x) converges
a.e to v′0(x) and there exists h ∈ L2(−n, n) such that |v′M(x)| ≤ h(x) a.e. Then notice that∣∣∣∣∫ n

−n
(A(vM)v′M − A(v0)v′0)ϕ′

∣∣∣∣ ≤ (∫ n

−n
|A(vM)v′M − A(v0)v′0|2

)1/2
‖ϕ′‖L2 (4.35)

and exists Q > 0 such that ‖vM‖∞ < Q for all M ∈ N, because vM converges to v0 in C0[−n, n]
due to the embedding W 1,2(−n, n) ↪→ C0[−n, n]. We can suppose Q big enough so that
Q > max{‖v0‖∞ + A(0), ‖vM‖∞ + A(0)} . Since

|A(vM(x))v′M(x)− A(v0(x))v′0(x)| → 0 a.e (4.36)

and

|A(vM(x))v′M(x)− A(v0(x))v′0(x)|2 ≤ (|A(vM(x))v′M(x)|+ |A(v0(x))v′0(x)|)2

≤ |A(vM(x))|2|v′M(x)|2

+ 2|A(vM(x))||A(v0(x))||v′M(x)||v′0(x)|
+ |A(v0(x))|2|v′0(x)|2

≤ Ã2Q2h2(x) + 2Ã2Q2|v′0(x)|h(x) + Ã2Q2|v′0(x)|2

almost everywhere, we conclude by (D.C.T) that∫ n

−n
A(vM)v′Mϕ′ →

∫ n

−n
A(v0)v′0ϕ′ asM →∞. (4.37)

Also, by direct calculation, the following convergences are true∫ n

−n
vMϕ→

∫ n

−n
v0ϕ (4.38)∫ n

−n
λa1|vM |q−1ϕ→

∫ n

−n
λa1|v0|q−1ϕ (4.39)∫ n

−n
|vM |p−1ϕ→

∫ n

−n
|v0|p−1ϕ (4.40)∫ n

−n
fk(|v′M |)ϕ→

∫ n

−n
fk(|v′0|)ϕ (4.41)
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as M →∞. Thus, for every ϕ ∈ VM∫ n

−n
A(v0)v′0ϕ′ +

∫ n

−n
v0ϕ = (4.42)

=
∫ n

−n
λa1|v0|q−1ϕ+

∫ n

−n
|v0|p−1ϕ+

∫ n

−n
fk(|v′0|)ϕ+

∫ n

−n

ψ

k
ϕ.

Furthermore, for every u ∈ E1
0(−n, n), it follows that∫ n

−n
A(v0)v′0PMu′ →

∫ n

−n
A(v0)v′0u′ (4.43)∫ n

−n
v0PMu→

∫ n

−n
v0u (4.44)∫ n

−n
λa1|v0|q−1PMu→

∫ n

−n
λa1|v0|q−1u (4.45)∫ n

−n
|v0|p−1PMu→

∫ n

−n
|v0|p−1u (4.46)∫ n

−n
fk(|v′0|)PMu→

∫ n

−n
fk(|v′0|)u (4.47)

as M →∞. Thus, for every u ∈ E1
0(−n, n)∫ n

−n
A(v0)v′0u′ +

∫ n

−n
v0u = (4.48)

=
∫ n

−n
λa1|v0|q−1u+

∫ n

−n
|v0|p−1u+

∫ n

−n
fk(|v′0|)u+

∫ n

−n

ψ

k
u.

So v0 is an E-weak solution of (P k
n ); by Lemma 24 v0 is also a weak solution. This finishes the

proof of Proposition 27.

In what follows we will make k →∞ thus we can consider ψ ≡ 1, because the term ψ
k

will converge to 0 as k →∞.

Proposition 29. The above weak solution v0 satisfies:

1. v0 ∈ C1,β[−n, n] ∩ C2(−n, n);

2. v0(t) ≥ 0.

Proof. To prove 1, we will use the Theorem 1 of [7, Pag. 1]. Let F : [−n, n]× [−Cr,Cr]×R→ R
be defined by F (x, z, p) = A(z)p, where C is the embedding constant for W 1,2(R) ↪→ L∞(R),
and B(x, z, p) = z − (λa1(x)|z|q−1 + |z|p−1 + fk(|p|) + 1

k
) be defined in the same domain. Then,

problem (P k
n ) may be rewritten as

divxF (x, u(x), u′(x)) +B(x, u(x), u′(x)) = 0.
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In order to use Theorem 1 of [7, Pag. 1] we must verify the existence of nonnegative
constants l, L,M0,m, κ with l ≤ L such that

∂F

∂p
(x, z, p)ξ2 ≥ l(κ+ |p|)mξ2, (4.49)∣∣∣∣∣∂F∂p (x, z, p)

∣∣∣∣∣ ≤ L(κ+ |p|)m, (4.50)

|F (x, z, p)− F (y, w, p)| ≤ L(1 + |p|)m+1 · |z − w|, (4.51)
|B(x, z, p)| ≤ L(1 + |p|)m+2 (4.52)

for all (x, z, p) ∈ {−n, n}× [−M0,M0]×R, w ∈ [−M0,M0] and ξ ∈ R. Since ∂F
∂p

(x, z, p) = A(z),
inequality (4.49) follows from A(z)ξ2 ≥ γξ2, that is, l = γ.

To prove the remaining inequalities take M0 = Cr,

T > max{Cr + λmax{|a1(−n)|, |a1(n)|}|Cr|q−1 + |Cr|p−1 + 1, 2C1, A(Cr), Ã},

L = 2T, κ = 0 and m = 0, where Ã is the Lipchitz constant of A. Then :

(4.50) ∣∣∣∣∣∂F∂p (x, z, p)
∣∣∣∣∣ = A(z) ≤ A(Cr) < L;

(4.51)
|F (x, z, p)− F (y, w, p)| = |A(z)p− A(w)p| ≤ Ã|p||z − w| ≤ L(1 + |p|)|z − w|;

(4.52)

|B(x, z, p)| = |z − (λa1(x)|z|q−1 + |z|p−1 + fk(|p|) + 1
k

)| (4.53)

≤ Cr + λmax{|a1(−n)|, |a1(n)|}|Cr|q−1 + |Cr|p−1 + 1/k + C1(1 + |p|θ−1)
≤ T + C1(1 + (1 + |p|)θ−1)
≤ T + 2C1(1 + |p|)2

≤ T (1 + (1 + |p|)2)
≤ 2T (1 + |p|)2 = L(1 + |p|)2.

Therefore, by Theorem 1 of [7] there exists β ∈ (0, 1) and a constant Ĉ, independent of k, such
that v0 ∈ C1,β([−n, n]) and

|v0|1+β ≤ Ĉ. (4.54)

It follows from [18, pag. 317, Chap. 6, Thm. 4] that v0 ∈ W 2,2(−n, n) and since v0 is a weak
solution of (P k

n ) we have

v′′0 = v0 − λa1|v0|q−1 − |v0|p−1 − fk(|v′0|)− 1/k − A′(v0)|v′0|2
A(v0) (4.55)
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showing that v′′0 is continuous, thus v0 ∈ C2(−n, n).

To prove that v0(t) ≥ 0 for all t ∈ (−n, n) we first notice that v−0 (t) = max{0,−v0(t)} ∈
H1

0 (−n, n). We will borrow the argument presented in [6, Pag. 14]. Using v−0 (t) as a test
function in the definition of weak solution provides

−
∫ n

−n
A(v0)|v−0 |2 −

∫ n

−n
|v−0 |2 =

∫ n

−n
λa1|v0|q−1v−0 +

∫ n

−n
|v0|p−1v−0 +

∫ n

−n
fk(|v′0|)v−0 +

∫ n

−n

1
k
v−0 .

(4.56)
Then −γ‖v−0 ‖2

W 1,2 ≥ 0, thus ‖v−0 ‖W 1,2 = 0 implying v−0 ≡ 0 a.e. Since v0 is continuous, v0(t) ≥ 0
for all t ∈ (−n, n).

4.2.1 Constructing a Solution to Problem (Pn)

Let vk be the (strong) solution of problem (P k
n ) – obtained just above – with k varying.

By the previous constructions we have that ‖vk‖W 1,2(−n,n) ≤ r independent of k, as noticed in
Remark 10. Then there exists un ∈ H1

0 (−n, n), ‖un‖W 1,2(−n,n) ≤ r, so that vk has a subsequence
converging weakly in H1

0 (−n, n) to un. From now on vk will denote this subsequence. Since the
function

H1
0 (−n, n) 3 w 7→

∫ n

−n
A(un)u′nw′

belongs to (H1
0 (−n, n))∗, we have – by the weak convergence – that∫ n

−n
A(un)u′n(vk − un)′ → 0 as k →∞.

This convergence will be useful in our next task: to prove that vk → un strongly in H1
0 (−n, n).

Lemma 30. The following convergence is true∫ n

−n
A(un)v′k(vk − un)′ → 0 as k →∞.

Proof. We might write∫ n

−n
A(un)v′k(vk − un)′ =

∫ n

−n
[A(un)− A(vk) + A(vk)]v′k(v′k − u′n)

=
∫ n

−n
[A(un)− A(vk)]v′k(v′k − u′n)︸ ︷︷ ︸

I1

+
∫ n

−n
A(vk)v′k(v′k − u′n)︸ ︷︷ ︸

I2

and analyze I1 and I2 separately.

Analysis of I2. By the weak formulation of (P k
n )∫ n

−n
A(vk)v′k(v′k − u′n) =

∫ n
−n−vk(vk − un) + λa1|vk|q−1(vk − un) + |vk|p−1(vk − un)

+
∫ n
−n

(vk−un)
k

(4.57)

+
∫ n

−n
fk(|v′k|)(vk − un). (4.58)
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Since we have compact injection of H1
0 (−n, n) onto L2(−n, n), the weak convergence of vk to un

in H1
0 (−n, n) implies ‖vk − un‖L2 → 0. Thus it is straightforward to see that (4.57) converges

to 0 as k →∞. Remains to verify what happen with (4.58) in the limit. We have that∫ n

−n
fk(|v′k|)(vk − un) ≤

∫ n

−n
C1(|v′k|θ−1 + |v′k|)(vk − un)

by Lemma 21. Using (4.54), that is, the estimation |vk|1,β ≤ Ĉ which is independent of k, we
have that

|v′k|θ−1 + |v′k| ≤ (Ĉ)θ−1 + Ĉ.

Then, ∫ n

−n
fk(|v′k|)(vk − un) ≤ C1[(Ĉ)θ−1 + Ĉ]

∫ n

−n
(vk − un) (4.59)

≤ (2n)1/2C1[(Ĉ)θ−1 + Ĉ]‖vk − un‖L2︸ ︷︷ ︸
→0 as k→∞

. (4.60)

Thus, limk→∞ I2(k) = 0.

Analysis of I1. We also have that limk→∞ I1(k) = 0, as one can see through∣∣∣∣∫ n

−n
[A(un)− A(vk)]v′k(v′k − u′n)

∣∣∣∣ ≤ ∫ n

−n
|A(un)− A(vk)||v′k||v′k − u′n|

≤ Ĉ
∫ n

−n
|A(un)− A(vk)||v′k − u′n|

≤ ĈÃ
∫ n

−n
|un − vk||v′k − u′n|

≤ ĈÃ‖un − vk‖L2‖v′k − u′n‖L2

≤ ĈÃ2r‖un − vk‖L2 .

Proving the Lemma.

Thus,

∫ n

−n
A(un)u′n(vk − un)′ → 0 as k →∞ (4.61)∫ n

−n
A(un)v′k(vk − un)′ → 0 as k →∞. (4.62)

From (4.62) – (4.61) we have ∫ n

−n
A(un)(v′k − u′n)2 → 0 as k →∞ (4.63)

implying that v′k → u′n in L2(−n, n), since γ is a uniform lower-bound for A. Hence vk → un in
H1

0 (−n, n).

Remark 12. Since vk → un in H1
0 (−n, n) we conclude that un is also an even function; due to

the embedding W 1,2(−n, n) ↪→ C[−n, n].

Proposition 31. The function un satisfies:
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1. un is strictly positive in (−n, n);

2. un is a solution to (Pn).

Proof.

Item 1. Let ã := infx∈[−n,n] a1(x). We will divide our argument in two cases:
Remark 13. This division of cases is a geometric argument that we borrowed from [1].

Case 1. There exists a subsequence (vki)i∈N of (vk) such that v′ki ≥ 0 in (−n, 0) for all i.

Consider the problem 
−(A(u)u′)′ + u = λã|u|q−1 in (−n, n)

u > 0 in (−n, n)

u(−n) = u(n) = 0.

(4.64)

Since v′ki ≥ 0 in (−n, 0) we get that vki > 0 in (−n, 0), because – due to Proposition 29 –
vki is an even solution of (P k

n ) and vki ≥ 0 ; i.e, supposing the existence of xi ∈ (−n, 0) such
that vki(xi) = 0 implies the existence of yi ∈ (−n, 0) such that v′ki(yi) < 0, which would be a
contradiction. Thus we see that vki is a sup-solution for this equation. Let φ1 be an even and
positive eigenfunction for the eigenvalue problem−u

′′ = λ1u in (−n, n)

u(−n) = u(n) = 0
(4.65)

where λ1 = π2

(2n)2 . Thus, choosing τ such that

τ 2−q(1 + γλ1)
λã

≤ φq−2
1

we have that τφ1 is as sub-solution of (4.64). By Theorem 19

vki(t) ≥ τφ1(t) ∀t ∈ (−n, n),

therefore, in the limit,
un(t) ≥ τφ1(t) > 0 ∀t ∈ (−n, n).

Case 2. For all subsequence of (vk) there exists a subsubsequence (vki)i∈N and exist a sequence
(zi)i∈N ⊂ (−n, 0) such that v′ki(zi) < 0.

Remark 14. Although the geometric argument is an inspiration from [1], we still need to adjust
it to our necessity. Lemma 32 is one of such adjustments.

Lemma 32. If x ∈ (−n, n) and v′′ki(x) ≥ 0, then vki(x) > (λã)
1

2−q .
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Proof. Since vki is a solution for the problem (P k
n ), with k = ki, for all t

−A′(vki(t))|v′ki(t)|
2 − A(vki(t))v′′ki(t) + vki(t) ≥ λã|vki(t)|q−1 + 1

ki
. (4.66)

Then, with t = x,

−A(vki(x))v′′ki(x) > λã|vki(x)|q−1 − vki(x) + A′(vki(x))|vki(x)|2

≥ λã|vki(x)|q−1 − vki(x).

By hypotheses v′′ki(x) ≥ 0, then using the previous inequality,

vki(x) > λã|vki(x)|q−1.

thus vki(x) 6= 0; also follows by the previous inequality that vki(x) > (λã)
1

2−q .

Now, in order to use this lemma, we ought to find a xi ∈ (−n, n) such that v′′ki(xi) ≥
0. Using the fact that vki is even and v′ki(zi) < 0 we have that v′ki(−zi) > 0. Let xi =
minx∈[zi,−zi] vki(x) and notice that xi 6= zi and xi 6= −zi; indeed, there exist δ > 0 such that,
if x ∈ (zi, zi + δ) ∪ (−zi − δ,−zi), then vki(x) < vki(zi) = vki(−zi). Hence xi ∈ (zi,−zi) and
v′ki(xi) = 0; therefore v′′ki(xi) must be greater or equal than 0, because if v′′ki(xi) < 0 there would
be ξ > 0 such that, for x ∈ (xi, xi + ξ) ⊂ (zi,−zi), v′ki(x) < 0; and for this neighborhood
vki(x) < vki(xi) – a contradiction with the minimality of xi. Thus for all i

vki(xi) > (λã)
1

2−q .

From the compacity of [−n, n], there exist x0 ∈ [−n, n] such that xi → x0 when i→∞; taking
a subsequence if necessary. Then

un(x0) = lim
i→∞

vki(xi) ≥ (λã)
1

2−q > 0.

Finally we will conclude item 1 showing that, also in this case, un is strictly positive in (−n, n).

Suppose by contradiction that there exists y ∈ (−n, n) such that un(y) = 0. Let
(d, s) ⊂ (−n, n) be the biggest interval containing y satisfying the property: if x ∈ (d, s)
then un(x) < (λã)

1
2−q

2 . By the maximality of (d, s) and the continuity of un we have that

un(d) = (λã)
1

2−q

2 , implying in particular that d > −n.

Since un(x) < (λã)
1

2−q

2 for all x ∈ (d, s) and vki converges uniformly to un, there exist
i1 ∈ N such that, for i > i1 and x ∈ (d, s),

vki(x) < (λã)
1

2−q .

Then, by Lemma 32 v′′ki(x) < 0. Using that un(d) = (λã)
1

2−q

2 , there exist i2 ∈ N such that i > i2

implies

vki(d) > (λã)
1

2−q

4 .
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Let i0 > max{i1, i2} and define f : (d, s)→ R by

f(x) = (λã)
1

2−q

4 · x− s
d− s

.

We have that f(d) = (λã)
1

2−q

4 and f(s) = 0. Let Ui(x) = vki(x)− f(x) for i ≥ i0, thenU
′′
i (x) < 0, for x ∈ (d, s)

Ui(d) > 0, Ui(s) = vki(s) ≥ 0.
(4.67)

By the maximum principle, the minimum of Ui is reached on the border of the interval (d, s),
implying that Ui(x) > 0 for all x ∈ (d, s), that is, vki(x) > f(x) for all x ∈ (d, s) and i ≥ i0.
Thus, taking x = y and making i→∞, we obtain

un(y) ≥ f(y) > 0,

contradiction.

Item 2. Since the estimation (4.54) holds, that is,

|vk|1+β ≤ Ĉ

for all k ∈ N; and, for all 1 < α < β, we have compact embedding C1,β[−n, n] ↪→ C1,α[−n, n],
we may assume – taking a subsequence if necessary – that there exist ũn ∈ C1,α[−n, n] such
that vk → ũn in C1,α[−n, n] as k →∞. Thus

vk → un in C0[−n, n] as k →∞
vk → ũn in C1,α[−n, n] as k →∞.

Then for all x ∈ [−n, n] we have

un(x) = lim
k→∞

vk(x) = ũn(x),

i.e, un = ũn ∈ C1,α[−n, n].

Considering the definition of weak solution, for all ϕ ∈ H1
0 (−n, n)∫ n

−n
A(vk)v′kϕ′ +

∫ n

−n
vkϕ =

∫ n

−n
(λa1|vk|q−1 + |vk|p−1)ϕ+

∫ n

−n
fk(|v′k|)ϕ+

∫ n

−n

ϕ

k
.

By (D.C.T) is straightforward to see that the following convergences are true:∫ n

−n
A(vk)v′kϕ′ →

∫ n

−n
A(un)u′nϕ′,∫ n

−n
vkϕ→

∫ n

−n
unϕ,∫ n

−n
(λa1|vk|q−1 + |vk|p−1)ϕ→

∫ n

−n
(λa1|un|q−1 + |un|p−1)ϕ,∫ n

−n

ϕ

k
→ 0,
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as k →∞. Let us examine the remaining integral. First notice that fk(|v′k|) converges uniformly
to g(|u′n|); indeed, given ε > 0 there exists k0 ∈ N such that k > k0 implies

||v′k(x)| − |u′n(x)|| < ε ∀x ∈ [−n, n]. (4.68)

Also there exist 0 < δk < ε such that if |x− y| < δk, then

|fk(x)− fk(y)| < ε

2; (4.69)

thus for k > k0

|fk(|v′k(x)|)− fk(|u′n(x)|)| < ε

2 ∀x ∈ [−n, n]. (4.70)

In the perspective of Theorem 18, fk converges to g uniformly in bounded sets; since ‖u′n‖∞ ≤ Ĉ,
for x ∈ [−Ĉ, Ĉ] there exist k1 ∈ N such that k > k1 implies

|fk(x)− g(x)| < ε

2 ∀x ∈ [−Ĉ, Ĉ] (4.71)

and with all these ingredients we obtain the uniform convergence, because for k > max{k0, k1}

|fk(|v′k(x)|)− g(|u′n(x)|)| ≤ |fk(|v′k(x)|)− fk(|u′n(x)|)|+ |fk(|u′n(x)|)− g(|u′n(x)|)| (4.72)
< ε ∀x ∈ [−n, n]. (4.73)

Thus, by (D.C.T) ∫ n

−n
fk(|v′k|)ϕ→

∫ n

−n
g(|u′n|)ϕ

as k → ∞. All these convergences together show that un is a weak solution for the problem
(Pn).

From Theorem 4 from [18, Pag. 317, Chap. 6] we conclude that un ∈ W 2,2(−n, n); and
similarly to the argument showed in equation (4.55) we obtain that u′′n ∈ C0(−n, n). Thus un is
a strong solution to problem (Pn).

4.3 SOLUTION IN R

To obtain a solution defined in R we will utilize a subsequence construction wrapping
it up with the arguments presented in the last section. The reader should notice that the
notation “un” used for the solution of (Pn) – previously obtained – in (−n, n) is not accidental:
extending un by zero out of [−n, n] we obtain a sequence (un) in H1(R). Throughout this
section we will use un to denote the solution “un” and its extension. Also one can see that
‖un‖H1(R) = ‖un‖W 1,2(−n,n) ≤ r for all n.

Let K1 = [−1, 1]; then for all n ≥ 1 we have that u1
n := un|K1 is well defined and u1

n ∈
H1(−1, 1). By the limitation ‖u1

n‖W 1,2(−1,1) ≤ r there exist a subsequence un,1 and s1 ∈ H1(−1, 1)
such that un,1 ⇀ s1 in H1(−1, 1). Notice that the compact injection H1(−1, 1) ↪→ C0[−1, 1]
implies that un,1 → s1 in C0[−1, 1].
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s1

un,1

K1

← −n n→∞

Figure 1 – Construction with K1 to obtain s1

Let K2 = [−2, 2]; taking n in the set of indices of the subsequence un,1, for n ≥ 2 we
have that u2

n := un|K2 is well defined and ‖u2
n‖W 1,2(−2,2) ≤ r. Thus there exist a subsequence

un,2 of u2
n and s2 ∈ H1(−2, 2) such that un,2 ⇀ s2 in H1(−2, 2).

s100

K100

← −n n→∞

un,100

Figure 2 – Construction with K100 to obtain s100
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Repeating the same argument, by induction we get that for all j ∈ N there exist a
subsequence un,j of un,j−1 and sj ∈ H1(−j, j) such that un,j ⇀ sj in H1(−j, j).

Remark 15. The reader should read the notation “un,j” as follows: un,j is the subsequence
of un that converges weakly in H1(−j, j) to sj. As mentioned this weak convergence implies
convergence in C0[−j, j].

Lemma 33. sj|[1−j,j−1] = sj−1

Proof. Given x ∈ [1− j, j − 1] we have that

sj−1(x) = lim
n→∞

un,j(x) = sj(x),

because un,j is a subsequence of un,j−1.

Define v : R→ R by the following rule: given x ∈ R there exist a minimum t̃ ∈ N such
that x ∈ [−t̃, t̃]; then v(x) = st̃(x). The previous lemma show us that v is well defined. This
function v is the candidate of solution in R, from here and forward we will focus our attention
in proving that, in fact, v is a smooth non-zero solution.

Let T be a compact subset of R and t̃ ∈ N such that T ⊂ [−t̃, t̃]. Defining W :
[−n, n]× [−Cr,Cr]× R −→ R by

W (x, z, p) = z − (λa1(x)|z|q−1 + |z|p−1 + g(|p|))

one can se that the estimation (4.53) also holds. Then, for any n ≥ t̃, by Theorem 1 from [7]
there exist Ĉ(t̃) > 0 and 0 < β(t̃) ≤ 1 such that

|un|1+β(t̃) ≤ Ĉ(t̃) in C1,β(t̃)[−t̃, t̃].

Taking 0 < α(t̃) < β(t̃) ≤ 1 we get (see the argumentation on Item 2 Proposition 31)

un,t̃ → v|[−t̃,t̃] in C1,α(t̃)[−t̃, t̃].

Thus, in particular, v|T ∈ C1(T ); since this is true for any T we conclude that v ∈ C1(R).

Now we will show that v is not identically null. Let ãt̃ := infx∈[−t̃,t̃] a1(x); we’ll use the
arguments presented in Item 1 from Proposition 31 in the interval [−t̃, t̃].

Case 1. There exist a subsequence (uni)i∈N of (un,t̃) such that u′ni ≥ 0 in (−t̃, 0) for all i.

The analysis of this case follows exactly the same parameters of Case 1 from Item 1, Proposition
31. The main difference is the change of ã to ãt̃.

Case 2. For all subsequence of (un,t̃) there exist a subsubsequence (uni)i∈N and exist a
sequence (zi)i∈N ⊂ (−t̃, 0) such that u′ni(zi) < 0.
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For this case we can reformulate Lemma 32 as follows: If x ∈ (−t̃, t̃) and u′′ni(x) ≥ 0, then
uni(x) > (λãt̃)

1
2−q . This is true because we already know that uni is strictly positive in (−t̃, t̃),

then the estimation

−A′(uni(t))|u′ni(t)|
2 − A(uni(t))u′′ni(t) + uni(t) > λãt̃|uni(t)|q−1 (4.74)

is immediately established. The remaining argumentation is similar.

Thus we conclude that v|T > 0, then v > 0 in R. At last, let ϕ ∈ C∞0 (R) be such that
supp(ϕ) = T . Then

∫ t̃

−t̃
A(un,t̃)u′n,t̃ϕ′ +

∫ t̃

−t̃
un,t̃ϕ =

∫ t̃

−t̃
(λa1|un,t̃|q−1 + |un,t̃|p−1)ϕ+

∫ t̃

−t̃
g(|u′n,t̃|)ϕ.

When n→∞ we get
∫ t̃

−t̃
A(v)v′ϕ′ +

∫ t̃

−t̃
vϕ =

∫ t̃

−t̃
(λa1|v|q−1 + |v|p−1)ϕ+

∫ t̃

−t̃
g(|v′|)ϕ.

Since T is any compact subset of [−t̃, t̃] we conclude that v is a weak solution of the problem

−(A(u)u′)′(t) + u(t) = λa1(t)|u(t)|q−1 + |u(t)|p−1 + g(|u′(t)|) (4.75)

in (−t̃, t̃); by the Theorem 1 from [18, sect. 6.3, thm. 1] we have that v ∈ H2
loc(−t̃, t̃), thus –

using the same arguments as in (4.55)– v ∈ C2(−t̃, t̃). Moreover, since there was no restriction
over t̃, v ∈ C2(R) and is a solution for our main problem in R. From Corollary 11 we get the
homoclinic condition.
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APPENDIX A – MISCELLANIES

This appendix contains certain proofs that were omitted through out this dissertation,
for sake of clarity, from the main text of chapter 4.

Proposition 34. Properties of E1
0(−n, n):

(I) it is a Hilbert space.

Proof. Indeed, it is clear that E1
0(−n, n) is a normed vector space. Let (vn) be a sequence

in E1
0(−n, n) such that vn → v in H1

0 (−n, n). For all n there exists a null measure subset of
(−n, n), say Pn, such that

vn(t) = vn(−t) ∀t ∈ P c
n.

Define P = ∪∞n=1Pn. Due to the embedding W 1,2(−n, n) ↪→ C0(−n, n) we get that vn → v in
C0(−n, n). Thus, making n→∞,

v(t) = v(−t) ∀t ∈ P c.

So v ∈ E1
0(−n, n), showing that E1

0(−n, n) is a closed subset of H1
0 (−n, n). Thus E1

0(−n, n) is a
Hilbert space.

(II) It is separable. (This follows from the fact that H1
0 is separable).

(III) It has an orthonormal basis.

Proof. See [16].

Proposition 35. The convergence stated in (4.26) is true, i.e,∫ n

−n

(
−vM + λ|vM |q−1 + |vM |p−1 + fk(|v′M |) + ψ

k

)
(vM − PMv0)→ 0 as M →∞.

Proof. Initially notice that, due to the orthogonal basis, PMv0 → v0 in H1
0 (−n, n).

1.
∫ n
−n

ψ
k
(vM − PMv0)→ 0.

Indeed,
∫ n
−n

ψ
k

(vM −PMv0) ≤ 1
k
‖ψ‖L2‖vM −PMv0‖L2 ≤ 1

k
‖ψ‖L2 (‖vM − v0‖L2 + ‖v0 − PMv0‖L2)︸ ︷︷ ︸

→0

.

2.
∫ n
−n fk(v′M)(vM − PMv0)→ 0.∣∣∣∣∫ n

−n
fk(v′M)(vM − PMv0)

∣∣∣∣ ≤ ∫ n

−n
|fk(v′M)− fk(0)||vM − PMv0|

≤ c(k)
∫ n

−n
|v′M ||vM − PMv0|

≤ c(k)‖v′M‖L2‖vM − PMv0‖L2

≤ c(k)r ‖vM − PMv0‖L2︸ ︷︷ ︸
→0

.
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3.
∫ n
−n(−vM + λa1|vM |q−1 + |vM |p−1)(vM − PMv0)→ 0.∣∣∣∣∫ n

−n
(−vM + λa1|vM |q−1 + |vM |p−1)(vM − PMv0)

∣∣∣∣ ≤∫ n

−n
|vM ||vM − PMv0|+

∫ n

−n
λ|a1||vM |q−1|vM − PMv0|+

∫ n

−n
|vM |p−1|vM − PMv0|

≤ Cr‖vM − PMv0‖L2 + λã(Cr)q−1(2n)1/2‖vM − PMv0‖L2 + (Cr)p−1(2n)1/2‖vM − PMv0‖L2︸ ︷︷ ︸
→0

Proposition 36. The convergences of Lemma 28 are true.

Proof. Let ΦM ,Φ,ΨM , ζM ∈ (E1
0(−n, n))∗ be given by

ΦM(w) =
∫ n

−n
A(vM)v′0w′

Φ(w) =
∫ n

−n
A(v0)v′0w′

ΨM(w) =
∫ n

−n
A(vM)PMv′0w′

ζM(w) =
∫ n

−n
A(v0)PMv′0w′.

Let w ∈ E1
0(−n, n);

(i) |ΦM − Φ| → 0.

|ΦM(w)− Φ(w)| =
∣∣∣∣∫ n

−n
A(vM)v′0w′ − A(v0)v′0w′

∣∣∣∣
≤
∣∣∣∣∫ n

−n
|A(vM)− A(v0)||v′0w′|

∣∣∣∣
≤
(∫ n

−n
|A(vM)− A(v0)|2|v′0|2

)1/2
‖w′‖L2 .

Notice that (∫ n

−n
|A(vM)− A(v0)|2|v′0|2

)1/2
→ 0 as M →∞

because A(vM)→ A(v0) pointwise, (since weak convergence in H1
0 (−n, n) implies convergence

in C0[−n, n]), and there exists a constant J > 0, (one can take J > max{Ãr, A(r)}), such that

|A(vM)− A(v0)|2|v′0|2 ≤ 4J2|v′0|2.

Thus by (D.C.T) we obtain the desired convergence. Then we conclude that (i) holds.

(ii) |ΨM − ΦM | → 0.

|ΨM(w)− ΦM(w)| =
∣∣∣∣∫ n

−n
A(vM)w′(PMv′0 − v′0)

∣∣∣∣
≤
∫ n

−n
|A(vM)||w′||PMv′0 − v′0|

≤ J
∫ n

−n
|w′||PMv′0 − v′0|

≤ J‖w‖W 1,2‖PMv′0 − v′0‖L2 .
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Since ‖PMv′0 − v′0‖L2 → 0 as M →∞ we obtain (ii).

(iii) |ζM − Φ| → 0.

|ζM(w)− Φ(w)| =
∣∣∣∣∫ n

−n
A(v0)w′(PMv′0 − v′0)

∣∣∣∣
≤
∫ n

−n
|A(v0)||w′||PMv′0 − v′0|

≤ J
∫ n

−n
|w′||PMv′0 − v′0|

≤ J‖w‖W 1,2‖PMv′0 − v′0‖L2 .

Since ‖PMv′0 − v′0‖L2 → 0 as M →∞ we obtain (iii).
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