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I. INTRODUCTION

In his seminal paper [1], John Bell proved, in a simplified version of the bipartite scenario considered by Einstein, Podolsky and
Rosen [2H4], that, under certain assumptions, there exist predictions of quantum theory incompatible with those of any physical
theory which can be described by Local Hidden Variable (LHV) Models [SH7]. Roughly speaking, these local models are those
in which outcomes of spacelike separated measurements are independent of each other when conditioned to the knowledge of a
underlying hidden variable. Indeed, when a Bell scenario is fixed, it is always possible to obtain a (tight) linear inequality on joint
probabilities, called a Bell Inequality, that holds for any theory that admits such a LHV description, and which might be violated
otherwise. Since Bell’s theorem is arguably one of most important results in quantum physics [8]], with deep implications in our
knowledge of the world [9H11]] and growing interest in practical applications [[7| 12} [13], it is natural asking about whether or not it
is difficult to construct a real experimental setup within the quantum realm that violates one of these inequalities [14-18]].

The present work answers one variant of that question. Using probabilistic techniques [} 16} [19H23]] , and generalizing previous
results of the authors in [24], we are able to find an upper-bound to the typical behaviour of optimal violations, for any Bell scenario
I' = (N,m,v), and to conclude in which extent the size of the local dimension d can influence [19] the probability to find N-partite
d-dimensional quantum systems that violate any Bell inequality associated with this scenario. In fact, as we are going to prove,
typical pure states do not produce large violations of Bell inequalities, apart from the fact that they are likely highly entangled [61(7].
We remark that though that apparent paradoxical result, i.e. that of the higher dimensional multipartite states are, the more entangled
they are though lesser Bell violations they show, our findings help to clarify the important difference (not always made clear) that
there exist between the concept of entanglement and (Bell) non-locality.

The work is organized as follows. Section [[]is devoted to set up some notation and definitions that will be used throughout
present work. In Section[[Tl| we discuss the typical behaviour of high violations, whose result is formally expressed by Theorem|[T}
In Section[[V]we give all key ingredients necessary to prove it.

II. BELL INEQUALITIES
A. Basic Definitions

Throughout the work we will often consider as our starting point multipartite device-independent, or black-boxes, scenarios |7,
25|, i.e. a general correlation scenario, denoted by

I':=(N,m,v), @)

in which N black-boxes are distributed among N players, each of these boxes admitting m different inputs (always schematically

represented within m different buttons at the top of each box), and such that for each input, among all v possible distinct outputs,

only one outcome (frequently represented by lamps at the bottom of each box) is observed given that choice of input[26] (see

Fig.[I).
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FIG. 1. Usual schematic representation of a Bell correlation scenario [7] I’ = (N,m,v). Each box represents a device-independent
apparatus whose internal details no one has access. Each button (input) above the boxes represents possible choices of measurements
to be performed by the black-box. Different outcomes are represented by different bulbs above each box. When a particular outcome
has been obtained the associated bulb glows indicating that an answer has been produced.

In addition, given that correlation scenario, since one does not have direct access to internal details of each box, the best description
one has for I" is through the correlations among inputs and outputs. It means that such experimental scenarios can be described then

(vm)

by a vector, usually called as behaviour [1,27], p € R " whose components

pal,...,aN,xl....,xN = P(al b '~'7aN|x1 b --~7XN), (2)

written in a neat manner, mean the joint probability for obtaining the outcome list {ay,...,an} € [v] X ... X [v] given that the inputs
{x1,....xy} € [m] x ... x [m] have been chosen. Furthermore, any physically admissible behaviour j € R(™)" must fulfil:

P(al,,..7aN|x17...,xN) € [O,1],Va],.,.,aN,Vx1,..,,xN 3)
Z P(al,...,aN|XI,...,XN) = 17 \V/)Cl,...,Xm. (4)
ajy,...,dny

Let Pr to denote the set of all admissible behaviours satisfying the Egs. (3) and (@) associated with the correlation scenario
I'=(N,m,v).

The first physically motived additional constraint one could imagine is that of the local statistics for each subset of boxes does not
depend on the choices of inputs of the other boxes outside this subset, i.e. that locally all marginals distributions are well-defined,
and that there is no communication among any subset of boxes. In particular it would imply that for each part i € [N] the 1-box
marginal distribution {P(a;|x;)} is well-defined as well. More formally, a behaviour j € Ar is non-signalling when for all choices
of subsets . C [N], say .¥ = {ij,..., i}, one has

/
Z P(ay,....an|x1,....xn) = P(ai,, ..., @i |Xi, 5 ., X5, ) = Z P(ay,...,an|xy, s XN), Y @iy s ooy g, 5)
a; ai
S84 ics
for all given inputs {xi,...,xy} and {x],...,x};} whose intersection is the list {x;,,...,x; }. The set of all such behaviours being

denoted by % 4 &, or A% for short. In particular, if each one of the boxes at a scenario I' is spacelike separated, the non-
signalling constraints (3 assure that each part cannot use its own box to signal to other parts instantaneously, preventing therefore
a direct conflict with relativity.

A more restrictive constraint appears when, given a scenario I', besides of being an admissible behaviour p € Zr one also
requires that such a global correlation also possess a local explanation, i.e. that the possible lack of independence among parts:

P(ay,...,an|x1,....,xn) # P(ai|x1) X ... x P(an|xN), 6)

be only an effect of unknowing all possible sources of (classical) shared randomness [28 [29] amongst all parts involved at the
scenario. Upon the knowledge of that hidden variable all local correlations would be independent of each other, and in that situation
the global behaviour would be explained through the product of each probability distribution belonging only to each part[30]. More

formally, given a scenario I' = (N,m,v) we say that a behaviour p € RO™" admits a local hidden variable (LHV) model, when
there exist a probability space & = (Q,X, i), and response functions

p(ailxi,-) : Q@ — [0,1]
o p(ailx;, ) @)

such that, for every input and output one has:

P(a17...,aN|x1,...7xN):/Qp(a1|x],w)p(az\xz,w)...p(aMxN,a))/.t(dw). ®)



One Facet\One Bell Inequality

FIG. 2. Schematic drawing of geometrical aspects of the non-signalling, quantum and local sets. From their definitions it is clear
that & C 2 C A .7 as suggest by the drawing above. In addition, firstly notice that while .4#".% and .& are polytopes, the quantum
set is not in general a polytope, even at the finite case. Secondly, as we have highlighted, every facet of the local polytope determines
a valid Bell inequality [7] (colors online).

The set of all behaviours p € % which admit a LHV model is called local set and denoted by & ¢, or .£ for short.

Since we are restricting ourselves to those cases in which the number of parts, the number of inputs as well as the number of
outcomes are all of them finite, we can assume [[7]] that the underlying probability space is also finite and therefore rather than
being just arbitrary convex sets, both . and .4".% are indeed polytopes [32]. In this geometrical framework the set of local
behaviours is defined by a finite number of facets, or Bell inequalities:

A5y ON X1 e XN

Yy T/ P(ay,...,an|x1;...,xy) <A, (O]

where f in Eq. (@) above labels a particular choice of a facet [32]]. We denote the set of all facets for the local polytope as .%. It is
easily seen that any local behaviour satisfies all Bell inequalities, while on the other hand, if a behaviour j does not admit a LHV
model, one must be able to find a facet f (described by one among many equivalent Bell inequalities) violated by such a non-local
behaviour.

We should note that for our correlation scenario I' = (N,m,v), with N,m,v finite, the local polytope has number of vertices
a =v"N and affine dimension D = (mv)N . An upper bound for F;,,,, its number of facets is:

(N

e(2v™ — (mv)N)] 2

Foae <2 10
A test of an inequality () can be designed by a quantum system through measurements of Bell Operators:
L f 1 N
%f T Z Tal,...,aN|x1A,H..,xNHal-Xl .. ®I1L1NJCN7 (11)
ay,.ay
X1 yeeey XN

where for each part k € [N] each set {TTX }—1 forms a POVM acting on a d—dimensional Hilbert space .7 associated with the

Ak Xk
k—th box. Therefore, given a pure quantum state |y) € ®§(V:1 ., a choice f € F of a facet, a collection A of POVM’s, and a
choice T of coefficients ;
I:= {Ta.],...,aNl.XI‘...,XN}alv"saNe[V] ’ (12)
X1y XN E [m]

with A and T both determining a valid Bell operator for f, a (possible) violation for such a Bell inequality is evaluated through the
function:

O, f,A.T) = Tr(B] . ly)wl). (13)

Given a facet f € %, there are finitely many Bell inequalities associated with it, in fact as it will become clear later, throughout
this work we are only interested on those Bell inequalities whose coefficients are uniformly bounded, therefore for that f € %
let &, be the set of all possible choices local POVM’s associated with all possible rewritings of Bell inequalities associated with
f. Analogously, let .7y be all possible coefficients, uniformly bounded by Mr depending on I", associated with all those possible
rewritings. Our strategy consists in, given f € .%, optimizing the violation of Bell inequalities over & and .7}, and then maximize
it over all possible facets f (see Eq. (I3) below).



Equation (T3) arises from the usual definition of quantum correlations: given a scenario I' = (N,m,v), we say that a behaviour
P € Pr belongs to set 2 of quantum correlations when there exist a pure N—partite state |y) € @Y_, .74, and POVM’s {Hﬁk =1
for each input x; and each part k € [N] such that:

P(ay,....an|x1,.xy) = Tr (H}Wl ®.. QI |w><qf\) , (14)

for all ay,...,ay and for all xq,...,xy.

For our purposes, as it will become clear later on, it will be more suitable to consider Bell inequalities (9) whose coefficients
are all uniformly bounded by a constant M. At the beginning it might seem very restrictive, since ultimately Bell inequalities
are nothing but linear functionals separating the (closed) local set . from the other behaviours (see Fig. 2), and as such they are
determined by those hyperplanes [33]] whose intersection defines .Z. It turns out that we can use the additional fact that elements
lying in Ar obey the constraints expressed in Eqs. (@) and (@) to rewrite any Bell inequality in a neat way. Moreover, since
Loubenets’ approach is very general, any of these Bell inequalities is again a valid Bell inequality, and as such has already been
considered in her optimization [6].

III. SMALL PROBABILITIES OF HIGH VIOLATIONS

Our main objective at the present work is to answer the following question:

given a random pure state |y) composed by N d—dimensional quantum systems, drawn accordingly to the uniform measure, what
should one expect for its best possible violation when maximizing over all relevant Bell inequalities of a given scenario
I'=(N,m,v)?

It is already know [6, [7| 22] that if either d the local dimension of each quantum system, or the number N of parts, is sufficiently
large then any quantum state is typically (according to the Haar measure) highly entangled. Might we expect then that typically
there will also exist a high degree for the optimal violation when one optimizes over all possible Bell inequalities?

In our framework, optimal violations (if any) of (a huge class of) Bell inequalities exhibited by a quantum state |y) € (C¢)®N
are given by the functional (see Eq. (T3)):

Vopt(1¥)) := sup | sup O(w,f,A,T) |, (15)
fez AEf?f
TeJy

where the supremum is taken over all possible facets .% and all quantum implementations of (uniformly bounded) Bell inequalities
associated with them.

If |y) is random variable, since Vopt s a function of y we can consider it as a random variable as well, then stated more formally
what we would like to estimate is the distribution function of such variable, that is:

P (Vopt > ¢), (16)

forc > 1.
Our main result is the following

Theorem 1. Given N,d > 2 integers. Let |y) € (Cd)N be a unit vector distributed according to the uniform measure in the sphere
A\ N
S2dN_] Of (C ) y then:

()N N

mN NyT 2 N myNd® N (mv) N (e—5-1)2
e(2v (mv) )} 2 y [ZNd (mv) _‘_1} " {MFN(mv) +1} Xei(ﬂi)

3672 (2m—1)2N=2 1
(mv)N —2 ) 1) ' a7

P (Vopt > ¢) < 4 {

forany 6 >0,¢c>06+1.

This theorem allows us to answer the question posed at the beginning of this section negatively, i.e. under some conditions a
typical state |y) composed by N d-dimensional quantum systems does not exhibit any significant degree of optimal violation for
any Bell inequality. In fact, since

P (Vopr > ¢) < 4dexp { [(mv)N}(IOgéze) + le;g v)_ lOg[(m;)N 2 ) +mvN2d? log(mv)
2 e S —1D2(2m—1)2 N
+myNd? log (41\(;d ) + (mV)N log <2?N) +MrN(mv)N log(mv) — (c—06 llgn(zz 1) {(zmi 1)2} } , (18)



if one assumes that d the local dimension of each subsystem satisfies
d>mv(2m—1)?2, (19)
and that in addition the uniform bound Mr- is not large enough, say, if
My =0 ((mn)N ) , (20)
then the fourth term in brackets dominates all other terms, so we are left with:
P (Vopt > ¢) = 0 @1

super-exponentially fast as N — oo,
Consequently:

if the local dimension d of a N-partite quantum system satisfies d > mv(2m — 1)?, with high probability, for large N, there is not
any significant degree of optimal violation for any Bell inequality whose coefficients are not extremely large.

It shows that although on the one hand typically any N-partite pure state, with large N, is highly entangled, on the other hand their
associated Bell violation is in general extraordinarily small.

IV. THE PROOF
A. Idea of the proof

Since our proof is going to be composed by many different pieces that we will glue together only at the very end, we dedicate
this first subsection to present the main ideas and the whole strategy on which our argument relies. Roughly speaking, to obtain the
bound

)N 2 N
o2 —(mv)¥)] " TaNd (o) | N N (mv)N . (m) o 24V e=8—1)? o)
()N —2 s s P\ 36m22m—1)2v2 )

(A) (B) (B ©)

]P(Vgp[ > C) S 4

on the probability of optimal violations of Bell inequalities, we use firstly some basic facts on probability plus an upper bound for

the number of facets in a Bell scenario. This will be responsible for the factor (A) in Eq. Secondly, we show how to approximate
any set X C [—1,1]" contained in a n-dimensional hypercube by a finite set Ng in such manner that for every point x € X there will
exist another one x’ € Ng such that ||x —x’|| < €. That €-net technique will be used twice and is responsible for terms (B) and (B')
in Eq. . The (C) term comes from Lévy’s lemma [34] together with a couple of results on the smoothness of Q function.
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