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RESUMO

Uma usina siderúrgica de grande porte recebe cerca de milhões de toneladas de sucata por
ano a partir do transporte rodoviário. O Tempo de Permanência de Veículos é uma das
métricas mais importantes que representa o desempenho do processo de recebimento de
matéria-prima. Previsões precisas desse indicador possibilitam que gerentes façam decisões
baseadas em dados sobre aspectos operacionais, táticos e estratégicos da operação. Esse
trabalho propõe uma abordagem de Aprendizado de Máquina para a previsão do Tempo
de Permanência de Veículos da operação de recebimento de sucata de uma grande usina
siderúgica brasileira. Cinco modelos de Aprendizado de Máquina foram treinados e testados
com nove meses de dados do processo. Os resultados foram comparados com o método
de previsão atual e estatisticamente validados com um teste ANOVA. A abordagem de
Aprendizado de Máquina proposta nesse trabalho alcançou uma melhor precisão, reduzindo
em 64% o RMSE, e tem o potencial de permitir decisões mais eficazes baseadas em dados
para a empresa.

Palavras-chave: Aprendizado de Máquina. Indústria Siderúrgica. Logística. Modelos de
regressão.



ABSTRACT

A large steel plant receives up to millions of tons of scrap metal through road transportation
each year in its inbound logistics process. The Length of Stay of vehicles is one of the
most important metric that represent the performance of the unloading operation of raw
materials. The provision of accurate prediction for this metric enables managers to make
data-driven decisions in operational, tactical and strategic level. This study proposes
a Machine Learning approach for the prediction of Length of Stay of vehicles loaded
with scrap metal in the inbound operation of a large Brazilian steel plant. Five Machine
Learning models were trained and tested with nine months of data from the process.
The results are compared with the current method of prediction and statically validated
through ANOVA test. The Machine Learning approach proposed in this study achieved
better accuracy, reducing in 64% the RMSE, and has the potential to enable more reliable
data-driven decisions for the company.

Key-words: Machine Learning. Steel Industry. Logistics. Regression models.
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1 INTRODUCTION

1.1 Background of the study

Steel production is an operation that consumes a large number of raw materials, in
particular, scrap metal (YUZOV; SEDYKH, 2003). The operation to transfer this material
from scrapyards to a steel plant is a complex system that moves up to millions of tons of
scrap metal each year by road transportation.

Length of stay (LOS) of vehicles is one of the most critical performance indicators
in inbound logistic operations. The provision of accurate prediction of the unloading time
of cargo, or the average unloading time of the day, enables managers to make better-
informed decisions about planning at the operational level (e.g., manpower, machinery
allocation, extra hours, and process capacity), or tactical and strategic level. (HYNDMAN;
ATHANASOPOULOS, 2018). According to (ZHAO; XIE, 2002), the accuracy of the
predictions can also benefit the performance of the whole operation by minimizing the
negative impact of uncertainty in a context where information is carried throughout the
entire supply chain.

1.2 Justification

The company in which this study was conducted, a large steel plant in Brazil,
makes a rough prediction of the LOS metric. The method that is currently used is the
division of the net weight (ton) of each cargo by a flow rate factor (ton/minute) - which is
set by the managers of the steel plant and is not reviewed frequently - plus a fixed amount
of time to contemplate other activities of the inbound process. The currently used method
presents high values and high variability of the error metrics.

The prediction of the LOS metric for the inbound operation is a challenging issue
since there is a great variety of vehicles and materials combinations to be considered. Also,
external factors such as machinery breakdown, process interruptions, shift change and
first-time inside the plant vehicle drivers often create fluctuations that are very hard to
predict.

According to (KELLEHER; NAMEE; D’ARCY, 2020), Machine Learning is a field
that is used to make predictive models by extracting patterns from datasets. In order
to predict a continuous target, regression algorithms model the relationship between the
target and one or more predictors using supervised learning.

Further justification is stated as follows:

• A accurate prediction of the LOS metric enables more reliable data-driven decisions
about the inbound process of scrap metal;
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• The company has a large database with enough information to characterize the LOS
values and enable a machine learning approach to the problem.

• The proposed Machine Learning approach achieved better accuracy than the method
that it’s currently used at the steel plant;

1.3 Scope

• An exploratory analysis of the LOS metric with the company’s data;

• An analysis of the current method of prediction;

• A proposal of a Machine Learning approach for improving the prediction of the steel
plant’s logistic KPI;

• A comparison of the performance of different regression machine learning models to
predict a continuous variable;

• The validation of a framework of training, testing, and statistical validation of the
results of machine learning models.

1.4 Statement of the objectives

This work aims to propose Machine Learning models as an efficient approach for
the prediction of the LOS metric. The key factor is to consider not only the net weight
of the cargo, but also other characteristics of the material, the vehicle, and Key Process
Indicators (KPIs) of the process to predict more accurately the Length of Stay. In order to
assemble all this information into a feasible solution, this study proposes the application
of Machine Learning Regression Models, trained with the company’s historical data from
the process to predict the LOS metric of the inbound operation of scrap metal.

1.5 Methodology

The methodology that will be conducted throughout the study is presented below:

• Data collection from the inbound process of scrap metal.

• A descriptive analysis of the LOS metric and the current method of prediction;

• Selection of features, data cleaning and preparation of the datasets with random
train/test split;

• Selection of the Machine Learning Models to be tested;
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• Evaluation of the models based on error metrics;

• Statistical validation of the results with One-way ANOVA.

1.6 Work organization

This work is organized as follows:

• Section 2 the LOS metric and its importance to the company is presented. Then,
the current method of prediction is discussed. And finally, the dataset is presented.

• Section 3 briefly recalls the Machine Learning models implemented to predict the
LOS metric.

• Section 4 presents the tools used in this study and discusses the errors of the Machine
Learning predictions, comparing the presented models. Additionally, a statistical
test validates the performance of the proposal.

• Section 5 presents the main conclusions of this work.
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2 PROBLEM FORMULATION

In this chapter, the LOS metric and its importance to the company is presented.
Then, the current method of prediction is discussed. And finally, the dataset is presented.

2.1 The LOS metric

The Length of Stay metric is an industrial KPI that is constantly monitored by the
steel plant and by higher administration. It represents the total time spent by a vehicle,
loaded with raw material, to unload its cargo at the steel plant. Managers of the company
keep a close eye on this KPI - hourly, daily e monthly mean values - and whenever it
presents an abnormal behavior, a committee takes place to investigate possible causes
and address solutions. The importance of this indicator relies on fact that it directly
impacts productivity, safety, and also laws that protect truck drivers against long hours of
unloading cargo.

The data of the inbound process of scrap metal was obtained from the company’s
database and the histogram of the LOS metric is presented in Figure 1. Based on the
histogram, it’s possible to observe a wide range of values for LOS, from less than an hour
up to 19 hours.

Figure 1 – Histogram of LOS values

Source: The author

In total, 23,974 observations were recorded and divided into 9 datasets, one for
each month. Each observation represents a truck whose cargo was unloaded at the steel
plant. Table 1 presents mean values, standard deviation (SD), the 25th, 50th, and 75th
percentiles of the LOS metric. LOS is recorded in hours.
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Table 1 – Descriptive statistics of the LOS metric

Dataset No. of observations Mean SD 25th 50th 75th
DS_1 3,009 4.93 6.32 2.92 4.30 6.05
DS_2 3,026 4.74 3.04 2.86 4.18 5.94
DS_3 3,577 4.91 2.51 3.09 4.45 6.23
DS_4 2,889 4.94 3.68 3.01 4.32 6.36
DS_5 2,492 4.56 5.49 2.75 3.98 5.72
DS_6 2,884 4.48 6.59 2.40 3.69 5.76
DS_7 1,814 4.67 2.91 2.54 3.89 6.24
DS_8 2,196 3.85 2.52 2.15 3.27 5.03
DS_9 2,087 3.81 2.64 2.45 3.36 4.74

Entire Dataset 23,974 4.60 4.37 2.71 3.99 5.84

Source: The author

The descriptive statistics of the LOS metric in Table 1 show high values of standard
deviation when compared to the mean values for each dataset. The main causes for
variation in the total time a vehicle spends at the plant are the great variety of vehicles
and materials combinations to be considered, machinery breakdown, process interruptions
and overload, shift change, queues, and first-time inside the plant vehicle drivers.

2.2 Current method of prediction

Equation 2.1 represents the current method of prediction of the LOS metric. The
method consists of the division of the net weight (ton) of each cargo by a flow rate factor
(ton/minute) - which is set by the managers of the steel plant and is not reviewed frequently
- plus a fixed amount of time to absorb other activities of the process, such as clearance,
weighing and motion inside the plant.

LOS = 1
60

(
Net weight of the cargo [ton]
Flow rate factor [ton/min] + Fixed amount of time [min]

)
(2.1)

Table 2 summarizes three error measures of the current method of LOS prediction:
Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and Non-Dimensional
Index Error(NDEI). Equations 2.2, 2.4, 2.3 describe the error metrics . Also, the values
of Table 2 are plotted in Figure 2. The RMSE of the method presents high variability
among the datasets, with values ranging from 2.55 hours up to 6.63 hours. The MAE
presents more stability than the RMSE, but it’s notably smaller. This discrepancy in the
magnitude of the error metrics shows that the current predictions have large residues, due
to the quadratic nature of the RMSE Equation (2.2). (CHAI; DRAXLER, 2014).
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RMSE =

√√√√ 1
T

T∑
k=1

(yk − ŷk)2, (2.2)

NDEI = RMSE

std([y1, ..., yT ]) , (2.3)

MAE = 1
T

T∑
k=1

|yk − ŷk|, (2.4)

where ŷk is the k−th forecasted value, yk the k−th actual value and T is the sample size.

Table 2 – Error metrics for the current method of LOS prediction

Dataset RMSE NDEI MAE
DS_1 6.37 1.01 2.05
DS_2 3.12 1.05 1.95
DS_3 2.55 1.03 1.88
DS_4 3.74 1.02 2.00
DS_5 5.53 1.00 1.94
DS_6 6.63 1.00 2.25
DS_7 2.95 1.02 2.24
DS_8 2.65 1.05 1.97
DS_9 2.70 1.02 1.65
Mean 4.03 1.02 1.99

Source: The author

Figure 2 – Current method: RMSE and MAE for each dataset

Source: The author
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2.3 The dataset

Table 3 presents a random sample of three vehicles in order to describe the dataset
used in this study. The first column shows 12 attributes that characterize the cargo, the
vehicle, and the current state of the inbound process. The following columns are values
for each of these attributes of the vehicles. Each observation collected from the company’s
database contains the twelve attributes and the LOS time.

Table 3 – Example of the dataset

Attributes Vehicle 1 Vehicle 2 Vehicle 3
day_of_the_week 2 6 5
No._half_of_the_month 1 1 1
group_of_vehicle 1 0 0
type_of_vehicle 75 127 127
bin_sweeping 1 1 1
sweeping_time 2.58 0.88 0.76
unload_location 27 14 14
id_material 32 30 30
multi_material 1 1 1
net_weight 48,220 72,960 72,920
amount_of_vehicles_day 119 95 125
amount_of_vehicles_inside 40 40 40
LOS 6.06 5.68 5.37

Source: The author

The day_of_the_week and No._half_of_the_month are time-related variables
that use integers from one to seven [1, 2, ..., 7] to represent the day of the week [Sunday,
Monday, ..., Saturday] and integers one or two [1,2] for the first or second half of the
month, respectively. The group_of_vehicle and the type_of_vehicle describe the physical
characteristics of the vehicle. The first is related to whether the vehicle needs external
help to unload the cargo, with an industrial claw for example, and then receives the value
of 1, or it can unload itself by lifting the front and dumping the material, receiving the
value of 0. The latter describes what kind of vehicle was carrying the cargo and what
is the maximum gross weight it can carry. The values of this attribute are based on
a standard list that the company uses for transportation modes. The binary variable
bin_sweeping indicates if the vehicle needed sweeping after unloading the cargo. This
information is useful since the sweeping_time (variable, in hours) is completely contained
in the LOS metric and, due to queues in the process, it may take more than an hour to
be completed. The unload_location is a variable that identifies the location where the
cargo was unloaded in the scrapyard. The id_material variable is related to the type of
material that was carried by the vehicle. The binary variable multi_material indicates
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whether more than one type of material was unloaded by the same vehicle or not. This
information is critical since vehicles with more than one type of material need to unload
each material at a time and be weighted by the end of each unloading process. By doing
this, the vehicle faces multiple queues and presents higher values of LOS. The net_weight
is the weight of the material unloaded, in kilograms. The amount_of_vehicles_day and
amount_of_vehicles_inside are directly related to the operation of the plant. The first
indicates how many vehicles were received that day and the latter indicates how many
vehicles were inside the plant at the moment that particular vehicle entered it. These two
variables are also related to queues in the process.

A Machine Learning approach is justifiable by the comparison of the number of
attributes that can be obtained from the company’s database to characterize each LOS
metric, presented in Table 3, to the current method of prediction (Equation 2.1), that only
uses the net weight of the cargo.
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3 PROPOSED MODELS

This section presents the proposed models for the prediction of the LOS metric
using the data described in Table 3. In order to predict a continuous variable, the chosen
models solve regression problems.

3.1 Linear Ridge Regression

Linear Regression models predict the targets using a linear combination of the
features. Proposed by (HOERL; KENNARD, 1970), Linear Ridge Regression addresses the
Ordinary Least Squares method with a penalty on the size of the coefficients as a possible
solution to the imprecision of the method when the variables are highly correlated. This
penalty is based on a α parameter to minimize a penalized residual sum of squares between
the observed targets in the dataset, and the targets predicted by the linear approximation.
Ridge regression does not perform feature selection. It shrinks coefficients towards zero,
including all of the features in the final model.

3.2 k-Nearest Neighbors Regressor

The k-Nearest Neighbors Regressor (KNN) is an intuitive and efficient algorithm
that has been used extensively for regression problems (HU et al., 2014), (KOHLI;
GODWIN; UROLAGIN, 2021), (BAN et al., 2013). The application of KNN is based on
the assumption that for data generated by a given process, there may be observations
of repeated patterns of behavior (BAN et al., 2013). Proposed by (YAKOWITZ, 1987),
KNN algorithm predicts a new value based on past feature similarity. For each prediction,
the model identifies the k most similar past patterns and combines their values.

The KNN algorithm holds a collection of training instances. The i-th training
instance is a vector of n-features as in {f i

1, f i
2, ..., f i

n} and a associated target value {ti
1,

ti
2, ..., ti

m} with size m. For a new prediction whose features are known {qi
1, qi

2, ..., qi
n},

the k most similar training instances are combined to predict the target value, based on a
similarity or distance metric.

3.3 Gradient Boosting Regressor

A boosting process is a method for improving the accuracy of learning algorithms by
fitting an initial model to the data and then building a second model focused on accurately
predicting the cases in which the first had a bad performance (SCHAPIRE, 1999). Proposed
by (FRIEDMAN, 2001), the Gradient Boosting Regressor uses a differentiable loss function
(e.g. squared error) to guide an additive method of creating weak learners in a greedy way,
following a gradient descent procedure and, thus, minimizing loss.
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In the regression problem, the algorithm’s objective is to find a function F (x)
that minimizes the loss function L(y, F (x)), given a training set {(x1, y1), ..., (xT , yT )}
with size T, input variables (i.e. predictors) xt and the corresponding output value yt.
The additive method to find the optimal solution F̂ (x) weights the week learners h(xt)
gradually throughout the descent procedure. The initialization of the algorithm is made
with a constant function F0(x) as follows:

F0(x) = arg min
γ

T∑
t=1

L(yt, γ) (3.1)

Fm(x) = Fm−1(x) + γmhm(x) (3.2)

where Fm(x) is the integration of the values of the basic regression trees, hm(x) is m-th
regression tree and γm is the weighting coefficient of the m-th tree.

The algorithm is optimized by the negative gradient, as follows:

zm(xt) = −∂L(yt, Fm−1(xt))
∂Fm−1(xt)

(3.3)

The next regression tree hm(x) is build based on the values of zm(xt) and x. The
γm coefficients are determined as follows:

γm = arg min
γ

T∑
t=1

L(yt, Fm−1(xt) − γmhm(xt)) (3.4)

According to (ZHAN et al., 2020), the performance of the Gradient Boosting
Regressor can be affected by three parameters: maximum number of trees, learning rate,
and max-depth of the tree. The best combination of the parameters enables the optimal
result of the model. The first refers to the total number of trees (i.e. weak learners)
that are integrated into Gradient Boosting Regressor. The second parameter sets the
contribution of each weak learner to the final results, with values between 0 and 1. The
third parameter expresses the complexity of the tree. Gradient Boosting Regressor is a
strong learner formed by the combination of weak learners. Therefore, the max-depth of
each tree must be controlled in order to limit the complexity of the whole system.

In order to summarize the algorithm, Table 4 presents the Gradient Boosting
Regressor’s pseudo-code, based on (ZHAN et al., 2020).
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Table 4 – Gradient Boosting Regressor’s Pseudo-code

Input: Training set {(x1, y1), ..., (xT , yT )}, differentiable loss function L(y, F (x)),
Maximum number of trees (M).
Initial value: F0(x) = arg minγ

∑T
t=1 L(yt, γ)

For t=1 to M:
For t=1 to T:

Calculate zm(xt) = −∂L(yt Fm−1(xt))
∂Fm−1(xt)

End For
Fit regression tree hm(x) to predict the negative gradient zm using input variables x.
Compute the gradient descent step size (learning rate) given by:
γm = arg minγ

∑T
t=1 L(yt Fm−1(xt) − γmhm(xt)).

Update Model Fm(x) = Fm−1(x) + γmhm(x)

End For
Output model Fm(x).

3.4 Decision Tree Regressor

Among the first statistical algorithms to be implemented in electronic form, Deci-
sion Tree is a widely used algorithm for regression problems (SCAVUZZO et al., 2018),
(SAGHAFI; ARABLOO, 2017), (CHOUDHURY et al., 2020). The main characteristic of
this model is the recursive subsetting of the data according to the values of the predictors
in order to progressively narrow the possible values into decision nodes until the model is
able to reach a prediction (leaf nodes). (VILLE, 2013).

Figure 3 is a visual representation of a decision tree. For each level of the tree, it’s
possible to observe the reduction of the mean squared error and the progressive subsetting
of the data until only one data point is left at the leaf node.
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Figure 3 – Decision tree representation

Source: (GEEKSFORGEEKS. . . , )

Splitting and pruning are two concepts that explain how decision trees work and
can be optimized, respectively. According to (KORSTANJE, 2021), the splitting starts
at the root node, with the whole dataset. For a set of attributes that characterize the
target variable, the first decision node splits the dataset by choosing, among all possible
options, the split that results in the lowest error. Then, the original dataset is split into
two groups. The procedure is repeated until no further splitting is possible, i.e. there’s
only one data point left. Pruning is a procedure to reduce complexity and avoid overfitting.
Two examples of pruning are cutting branches that are least needed after a decision tree
grew completely and adding a complexity parameter that prevents the trees from becoming
too detailed.

3.5 ePL-KRLS-DISCO

The ePL-KRLS-DISCO model is a fuzzy rule-based system (ALVES; AGUIAR,
2021). Fuzzy logic is an approach based on degrees of truth instead of the usual binary
boolean logic. Fuzzy rule-based systems express their knowledge base with a collection
of fuzzy if-then rules (PEDRYCZ, 1993). The algorithm creates rules (Equation 3.5) by
clustering similar inputs. For each new observation from the database, the algorithm
computes the output using the most suitable rule and updates its rules’ quality by
improving the quality of the clusters.
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Ri : IF x is Ai︸ ︷︷ ︸
Antecedent

THEN yi = fi(x, θi)︸ ︷︷ ︸
Consequent

(3.5)

where Ri is the i-th fuzzy rule, i = { 1,2,. . . ,R}, R is the number of fuzzy rules, x =
[x1, . . . , xm]T ∈ IRm is the input, m is the number of attributes in the input vector, Ai is
the fuzzy set of the i-th fuzzy rule, and yi is the output of the i-th rule calculated as a
function of the input and the consequent parameters.
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4 EXPERIMENTAL RESULTS

The five Machine Learning models mentioned in Section 3 were trained and tested
using the free version of Google Colaboratory platform, which is a serverless Jupyter
notebook environment for interactive development (BISONG, 2019). The Python Notebook
file and the datasets used for this study can be found on: <https://bit.ly/33qoJZe>

Since most of the transports’ characteristics were categorical variables (Table 3),
it was necessary to perform some preprocessing in the database to have only integers
and floats as inputs to the models. For this, the technique Label-Encoding (HANCOCK;
KHOSHGOFTAAR, 2020) was implemented, converting the categorical variables into an
associated integer number. To preserve the company’s sensitive information, the original
data is not shown in this study. Due to the quality of the data extracted, with a 0%
missing rate, no additional work was needed to replace missing values.

Then, each of the 9 datasets was separated into random training and test subsets
on the ratio of 85:15 using the function train_test_split from the scikit-learn Python
machine learning library (PEDREGOSA et al., 2011). A parameter of this function, named
random_state, is a pseudo-random number generator and controls the shuffling applied to
the data before applying the split (PEDREGOSA et al., 2011). The algorithms were put
inside a loop structure, altering the random_state parameter from 1 to 50. The results
of each iteration were recorded in order to compare the average outcome of each model
and its standard deviation. Table 5 presents the parameters used with the ML Models. A
heuristic analysis was performed to set the values for the models’ parameters.

Table 5 – Machine Learning models’ parameters

Model Parameters

Linear Model Ridge α = 0.1

KNN Regressor n_neighbors = 2

Gradient Boosting Regressor
n_estimators = 500, max_depth = 4,
min_samples_split = 5,
learning_rate = 0.15, loss = squared_error

Decision Tree Regressor max_depth=2

ePL-KRLS-DISCO
α = 0.001, β = 0.06,
λ = 0.0000001, σ = 0.3,
e_utility = 0.05

Source: The author
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4.1 Evaluation method

The evaluation of the models was measured with three error measures - Root Mean
Square Error (RMSE), Mean Absolute Error (MAE), and Non-Dimensional Index Error
(NDEI). Equations 2.2, 2.4, 2.3 describe the error metrics. Also, another relevant metric to
compare the performance of the models is computational complexity. The model execution
time is usually a good way to represent it since faster computational speed increases the
possibility of the algorithm deployment. (CORMEN et al., 2009).

4.2 Models’ results

Table 6 summarizes the results of the models for each dataset, evaluated with the
metrics presented above.

Table 6 – Results of the predicitons

Dataset ML Model RMSE NDEI MAE Time (s)

DS_1

Linear Ridge Regression 1.49 ± 0.14 0.98 ± 0.07 1.00 ± 0.06 0.02 ± 0.01
KNN Regressor 3.01 ± 0.13 1.98 ± 0.08 1.41 ± 0.02 0.02 ± 0.00
Gradient Boosting Regressor 1.36 ± 0.12 0.91 ± 0.07 0.92 ± 0.04 1.78 ± 0.33
Decision Tree Regressor 1.54 ± 0.11 1.03 ± 0.06 1.01 ± 0.04 0.03 ± 0.02
ePL-KRLS-DISCO 1.31 ± 0.11 0.87 ± 0.07 0.97 ± 0.07 651.99 ± 750.32

DS_2

Linear Ridge Regression 1.59 ± 0.11 1.05 ± 0.06 1.03 ± 0.04 0.01 ± 0.01
KNN Regressor 2.88 ± 0.18 1.90 ± 0.10 1.35 ± 0.04 0.02 ± 0.00
Gradient Boosting Regressor 1.52 ± 0.11 1.01 ± 0.06 0.98 ± 0.04 1.85 ± 0.48
Decision Tree Regressor 1.64 ± 0.10 1.08 ± 0.06 1.06 ± 0.04 0.01 ± 0.00
ePL-KRLS-DISCO 1.49 ± 0.18 0.98 ± 0.12 1.07 ± 0.05 558.88 ± 682.01

DS_3

Linear Ridge Regression 1.46 ± 0.10 0.98 ± 0.05 0.97 ± 0.04 0.01 ± 0.00
KNN Regressor 2.87 ± 0.17 1.92 ± 0.11 1.36 ± 0.04 0.01 ± 0.00
Gradient Boosting Regressor 1.45 ± 0.09 0.97 ± 0.06 0.96 ± 0.03 2.22 ± 0.67
Decision Tree Regressor 1.49 ± 0.09 1.00 ± 0.05 1.00 ± 0.04 0.02 ± 0.00
ePL-KRLS-DISCO 1.40 ± 0.15 0.94 ± 0.10 1.04 ± 0.10 600.13 ± 771.50

DS_4

Linear Ridge Regression 1.69 ± 0.10 1.13 ± 0.05 1.06 ± 0.04 0.02 ± 0.01
KNN Regressor 3.10 ± 0.15 2.06 ± 0.09 1.42 ± 0.04 0.02 ± 0.01
Gradient Boosting Regressor 1.75 ± 0.12 1.16 ± 0.07 1.05 ± 0.04 1.96 ± 0.68
Decision Tree Regressor 1.71 ± 0.10 1.14 ± 0.05 1.07 ± 0.04 0.01 ± 0.00
ePL-KRLS-DISCO 1.55 ± 0.19 1.03 ± 0.12 1.11 ± 0.07 443.58 ± 568.89

DS_5

Linear Ridge Regression 1.55 ± 0.10 1.01 ± 0.05 1.00 ± 0.04 0.02 ± 0.01
KNN Regressor 2.91 ± 0.21 1.90 ± 0.12 1.36 ± 0.05 0.02 ± 0.01
Gradient Boosting Regressor 1.47 ± 0.11 0.96 ± 0.07 0.95 ± 0.04 1.56 ± 0.46
Decision Tree Regressor 1.57 ± 0.11 1.02 ± 0.06 1.00 ± 0.04 0.01 ± 0.00
ePL-KRLS-DISCO 1.44 ± 0.16 0.94 ± 0.10 1.03 ± 0.05 375.96 ± 474.09

DS_6

Linear Ridge Regression 1.71 ± 0.11 1.04 ± 0.05 1.06 ± 0.03 0.01 ± 0.00
KNN Regressor 2.53 ± 0.17 1.54 ± 0.09 1.23 ± 0.04 0.01 ± 0.00
Gradient Boosting Regressor 1.24 ± 0.11 0.75 ± 0.06 0.80 ± 0.03 1.71 ± 0.45

Continues on next page
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Table 6 – Continuation
Dataset ML Model RMSE NDEI MAE Time (s)

Decision Tree Regressor 1.63 ± 0.08 0.99 ± 0.04 1.04 ± 0.03 0.01 ± 0.00
ePL-KRLS-DISCO 1.48 ± 0.16 0.90 ± 0.10 1.06 ± 0.05 420.83 ± 544.15

DS_7

Linear Ridge Regression 1.82 ± 0.15 1.13 ± 0.08 1.09 ± 0.05 0.04 ± 0.02
KNN Regressor 3.49 ± 0.31 2.17 ± 0.17 1.49 ± 0.07 0.03 ± 0.01
Gradient Boosting Regressor 1.76 ± 0.18 1.10 ± 0.10 1.03 ± 0.06 1.16 ± 0.35
Decision Tree Regressor 1.82 ± 0.14 1.13 ± 0.07 1.10 ± 0.05 0.01 ± 0.00
ePL-KRLS-DISCO 1.60 ± 0.25 1.00 ± 0.15 1.11 ± 0.06 171.51 ± 221.97

DS_8

Linear Ridge Regression 1.55 ± 0.11 0.99 ± 0.06 0.99 ± 0.04 0.01 ± 0.00
KNN Regressor 2.93 ± 0.25 1.86 ± 0.14 1.34 ± 0.06 0.01 ± 0.00
Gradient Boosting Regressor 1.54 ± 0.10 0.98 ± 0.07 0.96 ± 0.04 1.61 ± 0.52
Decision Tree Regressor 1.48 ± 0.10 0.94 ± 0.06 0.97 ± 0.04 0.01 ± 0.00
ePL-KRLS-DISCO 1.38 ± 0.13 0.87 ± 0.08 1.00 ± 0.05 266.15 ± 344.02

DS_9

Linear Ridge Regression 1.27 ± 0.11 0.89 ± 0.07 0.90 ± 0.04 0.02 ± 0.01
KNN Regressor 2.42 ± 0.21 1.70 ± 0.12 1.24 ± 0.06 0.02 ± 0.01
Gradient Boosting Regressor 1.34 ± 0.14 0.94 ± 0.09 0.90 ± 0.05 1.45 ± 0.41
Decision Tree Regressor 1.34 ± 0.12 0.94 ± 0.07 0.91 ± 0.04 0.01 ± 0.00
ePL-KRLS-DISCO 1.27 ± 0.11 0.89 ± 0.07 0.94 ± 0.05 287.04 ± 366.55

End of table
Source: The author

In order to statistically validate the results, a One-Way ANOVA test was performed.
According to (SCHEFFE, 1999), the procedure uses the variances of the groups to determine
whether the means are different or not. The comparison of variance between group means
against the variance within groups works as a way to determine whether the groups are all
part of a larger population or distinct populations with different characteristics. The null
hypothesis states that all populations’ means are equal while the alternative hypothesis
states that at least one is different. (MONTGOMERY; RUNGER, 2003). The categorical
factor used in the test is the ML models, while the continuous response variable is the
RMSE of each model, for each dataset.

Table 7 presents the results of the tests, considering a significance level (α) of
0.05. If the p − value is lower than α, there’s not enough information to conclude the null
hypothesis is true and the statement that all the models have equal accuracy is rejected.

According to Table 7, for all datasets, at least one of the models has a different
accuracy. Analyzing the means comparison outcome from One-way ANOVA, it’s possible
to identify to which models each model has different accuracy. Table 8 presents the ranking
of the models in terms of better accuracy for each dataset. Also, it presents for each model,
the models to which it does not overlap the confidence interval for its RMSE value.
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Table 7 – ANOVA results

Dataset p-value Observation
DS_1 < 0.001 H0 rejected
DS_2 < 0.001 H0 rejected
DS_3 < 0.001 H0 rejected
DS_4 < 0.001 H0 rejected
DS_5 < 0.001 H0 rejected
DS_6 < 0.001 H0 rejected
DS_7 < 0.001 H0 rejected
DS_8 < 0.001 H0 rejected
DS_9 < 0.001 H0 rejected

Source: The author

Table 8 – Means comparison

Dataset # Rank ML Model Differs from

DS_1

1 ePL-KRLS-DISCO 2, 3, 4, 5
2 Gradient Boosting Regressor 1, 3, 4, 5
3 Linear Model Ridge 1, 2, 4, 5
4 Decision Tree Regressor 1, 2, 3 ,5
5 KNN Regressor 1, 2, 3, 4

DS_2

1 ePL-KRLS-DISCO 2, 3, 4, 5
2 Gradient Boosting Regressor 1, 3, 4, 5
3 Linear Model Ridge 1, 2, 5
4 Decision Tree Regressor 1, 2, 5
5 KNN Regressor 1, 2, 3, 4

DS_3

1 ePL-KRLS-DISCO 2, 3, 4, 5
2 Gradient Boosting Regressor 1, 5
3 Linear Model Ridge 1, 5
4 Decision Tree Regressor 1, 5
5 KNN Regressor 1, 2, 3, 4

DS_4

1 ePL-KRLS-DISCO 2, 3, 4, 5
2 Linear Model Ridge 1, 5
3 Decision Tree Regressor 1, 5
4 Gradient Boosting Regressor 1, 5
5 KNN Regressor 1, 2, 3, 4

DS_5

1 ePL-KRLS-DISCO 2, 3, 4, 5
2 Gradient Boosting Regressor 1, 3, 4, 5
3 Linear Model Ridge 1, 2, 5
4 Decision Tree Regressor 1, 2, 5

Continues on next page
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Table 8 – Continuation
Dataset # Rank ML Model Differs from

5 KNN Regressor 1, 2, 3, 4

DS_6

1 Gradient Boosting Regressor 2, 3, 4, 5
2 ePL-KRLS-DISCO 1, 3, 4, 5
3 Decision Tree Regressor 1, 2, 4 ,5
4 Linear Model Ridge 1, 2, 3, 5
5 KNN Regressor 1, 2, 3, 4

DS_7

1 ePL-KRLS-DISCO 2, 3, 4, 5
2 Gradient Boosting Regressor 1, 5
3 Decision Tree Regressor 1, 5
4 Linear Model Ridge 1, 5
5 KNN Regressor 1, 2, 3, 4

DS_8

1 ePL-KRLS-DISCO 2, 3, 4, 5
2 Decision Tree Regressor 1, 3, 4, 5
3 Gradient Boosting Regressor 1, 2, 5
4 Linear Model Ridge 1, 2, 5
5 KNN Regressor 1, 2, 3, 4

DS_9

1 ePL-KRLS-DISCO 3, 4, 5
2 Linear Model Ridge 3, 4, 5
3 Decision Tree Regressor 1, 2, 5
4 Gradient Boosting Regressor 1, 2, 5
5 KNN Regressor 1, 2, 3, 4

End of table
Source: The author

The results of the statistical test presented in Tables 7 and 8, show that ePL-KRLS-
DISCO demonstrated the best accuracy for datasets 1, 2, 3, 4, 5, 7, 8, and 9, compared to
the other presented ML Models, with a 95% confidence level, achieving the lowest values
of RMSE and not overlapping the confidence interval of its mean RMSE with any other
model. Considering all datasets, the model’s mean value of RMSE presents a reduction of
64% when compared to the current method of prediction. Regarding dataset 6, Gradient
Boosting Regressor demonstrated the best result, with an RMSE of 1.24 ± 0.11, followed
by ePL-KRLS-DISCO, with an RMSE of 1.48 ± 0.16. The KNN Regressor performed the
worst results of accuracy in all datasets. Linear Model Ridge and Decision Tree Regressor
performed average results when compared with the other models. Also, according to the
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One-way ANOVA Test, these models’ accuracy results are statistically equal for datasets
2, 3, 4, 5, and 7.

Regarding the computational cost, estimated by the algorithm’s execution time,
ePL-KRLS-DISCO presented values starting at 171.51 ± 221.97 seconds up to 651.99
± 750.32 seconds. Gradient Boosting Regressor performed the second-worst results
with values ranging from 1.16 ± 0.35 seconds up to 2.22 ± 0.67 seconds. All other
models presented execution time values lower than 0.04 seconds with almost zero standard
deviation.

4.3 Discussions

Figures 4 and 5 present the performance of the Machine Learning approach (Table
6) in comparison with the performance of the current method of prediction (Table 2).
Despite the KNeigbors Regressor, the Machine Learning models tested show that it is
possible to reduce the variance and achieve significantly lower values of RMSE than the
method that is currently used, which presents values ranging from 2.55 hours up to 6.37
hours. RMSE values that are significantly higher than MAE are a good indicator of
large residues in the prediction due to the quadratic nature of the Equation (2.2) (CHAI;
DRAXLER, 2014). The Machine Learning approach also presented lower values of MAE
in all datasets tested, with errors inferior to 1 hour. The results of this approach reveal
the potential to enable more reliable data-driven decisions regarding the inbound process
of scrap metal.
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Figure 4 – Plot of the RMSE values of the models and current method of prediction

Source: The author

Figure 5 – Plot of the MAE values of the models and current method of prediction

Source: The author
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5 CONCLUSIONS

This study presented the results of a Machine Learning approach to the prediction
of vehicles’ Length of Stay for the inbound operation of scrap metal of a Brazilian steel
plant. The results’ simulations show a feasible solution to improve the accuracy of the
LOS prediction issue.

The current method of prediction does not have a good performance to contribute
to decision-making in the day-to-day operations of the steel plant, nor to tactical or
strategical level. Furthermore, this method only considers one attribute to make a
prediction. Therefore, the Machine Learning approach is justifiable by the importance
of the KPI to the company and by the amount of data available that is not used for
prediction.

The results of this study presented five Machine Learning models that are more
accurate than the current method that is used. This represents an opportunity for the
company to consider using Machine Learning to predict important indicators and enable
more robust data-driven decisions.

Future work includes the evaluation of other related data sources to improve
accuracy (e.g. data from the scrap metal purchase plan, stock level, weather conditions).
Also, this study is an initial step for a decision model to be implemented, based on the
predicted LOS metric. In the State-Of-The-Art of the 4.0 Industry, a decision model
would be able to optimize the process in real-time. In the context of the inbound process
of scrap metal, entrance anticipation, selection of unloading location and priority pass of
vehicles are routine decisions that could be optimized and automated.
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