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Motivação

Os mais importantes resultados teóricos na teoria da probabilidade são os

teoremas limites (Ross, 2010). Destes, os mais importantes são as leis dos

grandes números e os teoremas centrais do limite.
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Motivação

Usualmente, teoremas são considerados leis de grandes números se estive-

rem interessados em enunciar condições nas quais a média de uma sequência

de variáveis aleatórias converge (de alguma forma) para a média esperada.
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Motivação

Por outro lado, teoremas centrais do limite estão interessados em de-

terminar condições nas quais a soma de um grande número de variáveis

aleatórias possui uma distribuição de probabilidade que é aproximadamente

normal.

Magalhães, TM (ICE-UFJF) Teoremas limites 14 de janeiro de 2026 6 / 35



Roteiro

1 Motivação

2 Lei fraca dos grandes números

3 Lei forte dos grandes números

4 Teorema central do limite

5 Limites de binomiais para Poisson

6 Referências bibliográficas

Magalhães, TM (ICE-UFJF) Teoremas limites 14 de janeiro de 2026 7 / 35



Lei fraca dos grandes números

Seja X1,X2, . . . uma sequência de variáveis aleatórias independentes e iden-

ticamente distribuídas, com média finita, isto é, E(Xn) = µ < ∞, n ≥ 1.

As somas parciais Sn = X1 + · · ·+ Xn satisfazem

Sn
n

p−→ µ.

Prova: ver exercício da aula passada.
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Lei fraca dos grandes números

A lei fraca dos grandes números foi demonstrada por Khinchine (1929).

Antes, a demonstração foi originalmente feita por Bernoulli (1713), para o

caso de uma sequência de variáveis aleatórias com distribuição Bernoulli,

para estas condições,

Sn
n

p−→ p.
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Lei fraca dos grandes números

Seja X1,X2, . . . uma sequência de variáveis aleatórias e consideremos Sn =

X1 + · · ·+ Xn. Se

lim
n→∞

Var(Sn)
n2 = 0,

então

Sn − E(Sn)
n

p−→ 0.

Este caso, mais geral, foi demonstrado por Chebyshev (1867).
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Lei forte dos grandes números

A lei forte dos grandes números é provavelmente o resultado mais famoso na

teoria da probabilidade (Ross, 2010). Ela diz que a média de uma sequência

de variáveis aleatórias independentes com mesma distribuição converge, com

probabilidade 1, para a média daquela distribuição.
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Lei forte dos grandes números

A lei forte dos grandes números foi demonstrada por Kolmogorov (1933).

Antes, a demonstração foi originalmente feita por Borel (1909), para o caso

de uma sequência de variáveis aleatórias com distribuição Bernoulli,

para

estas condições,

Sn
n

qc−→ p.
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Teorema central do limite

O teorema central do limite é um dos resultados mais extraordinários na

teoria da probabilidade (Ross, 2010). Em linhas gerais, ele diz que a soma

de um grande número de variáveis aleatórias independentes tem uma distri-

buição que é aproximadamente normal.
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Teorema central do limite

Com isso, ele não somente fornece um método simples para o cálculo de

probabilidades aproximadas para somas de variáveis aleatórias independen-

tes, mas também ajuda a explicar o extraordinário fato de que frequências

empíricas de muitas populações naturais exibem curvas na forma de um sino

(isto é, normais).
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Teorema central do limite

Seja X1,X2, . . . uma sequência de variáveis aleatórias independentes e iden-

ticamente distribuídas com média µ e variância σ2. Seja Sn = X1 + · · ·+Xn,

então

Sn − nµ
σ
√
n

d−→ N(0, 1).
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Teorema central do limite

Prova. Seja

Zn = Sn − nµ
σ
√
n =

∑n
i=1(Xi − µ)
σ
√
n =

∑n
i=1 Yi
σ
√
n .

A função geradora de momentos de Zn, MZn(t), é dada por

MZn(t) = E(etZn) = E (exp {tZn}) = E

(
exp

{
t
∑n

i=1 Yi
σ
√
n

})
= E

(
exp

{ t
σ
√
n (Y1 + Y2 + · · ·+ Yn)

})
.
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Teorema central do limite

Dando prosseguimento, nós temos que

MZn(t) = E

(
exp

{ t
σ
√
nY1

}
× · · · × exp

{ t
σ
√
nYn

})
Ind.= E

(
exp

{ t
σ
√
nY1

})
× · · · × E

(
exp

{ t
σ
√
nYn

})
(1)

I.D.=
[
E

(
exp

{ t
σ
√
nY1

})]n
=
[
MY1

( t
σ
√
n

)]n
.

Ou seja, a FGM da VA Zn, avaliada no ponto t, pode ser escrita como uma

função da FGM da VA Y1 = X1 − µ, avaliada no ponto t/σ
√
n.
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Teorema central do limite

Antes de nós continuarmos, nós iremos discutir algumas propriedades da

FGM de Y1 = X1 − µ e, por simplicidade, avaliada no ponto t. Usando

série de Taylor (1715) até o primeiro termo e em torno de t = 0,

nós temos

que

MY1(t) =
∞∑

n=0

M(n)
Y1

(0)
n! tn = M(0)

Y1
(0) + t M(1)

Y1
(0) + t2

2 M(2)
Y1

(s), (2)

em que 0 < s < t e M(n)
Y1

(·) é a n-ésima derivada de MY1(·).
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Teorema central do limite

Notem que, pelas propriedades da FGM, nós temos que

M(0)
Y1

(0) = MY1(0) = 1,

M(1)
Y1

(0) = E(Y1) = E(X1 − µ) = 0,

M(2)
Y1

(0) = E(Y 2
1 ) = E[(X1 − µ)2] = σ2.
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Teorema central do limite

Usando os dois primeiros resultados anteriores, nós podemos simplificar (2),

da seguinte forma

MY1(t) = 1 + t2

2 M(2)
Y1

(s).

Somando e subtraindo σ2t2/2 na equação acima,

MY1(t) = 1+σ2t2

2 − σ2t2

2 + t2

2 M(2)
Y1

(s) (3)

= 1 + σ2t2

2 +
[
M(2)

Y1
(s)− σ2

] t2

2 .
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Teorema central do limite

A equação (3) é a FGM de Y1. Como visto anteriormente, a FGM de

Zn é uma função da FGM de Y1, avaliada em t/σ
√
n.

Substituindo (3),

avaliando no ponto t/σ
√
n, em (1), nós temos que

MZn(t) =
{
1 + t2

2n +
[
M(2)

Y1
(s)− σ2

] t2

2nσ2

}n

, (4)

em que 0 < s < t/σ
√
n e −hσ

√
n < t < hσ

√
n.
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Teorema central do limite

Para n→∞ segue-se que s → 0 e como M(2)
Y1

é contínua na origem,

lim
s→0

[
M(2)

Y1
(s)− σ2

]
= 0. (5)

Lembrando o seguinte resultado do cálculo,

lim
n→∞

(
1 + an

n

)n
= ea, (6)

quando an → a.
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Teorema central do limite

Por (5) e (6), nós concluímos a partir de (4) que

lim
n→∞

MZn(t) = et2/2,

ou seja, quando n→∞, o limite da FGM de Zn é a FGM de uma VA com

distribuição normal padrão.

Ufa!!!

Magalhães, TM (ICE-UFJF) Teoremas limites 14 de janeiro de 2026 26 / 35



Teorema central do limite

Por (5) e (6), nós concluímos a partir de (4) que

lim
n→∞

MZn(t) = et2/2,

ou seja, quando n→∞, o limite da FGM de Zn é a FGM de uma VA com

distribuição normal padrão.

Ufa!!!

Magalhães, TM (ICE-UFJF) Teoremas limites 14 de janeiro de 2026 26 / 35



Teorema central do limite

Por (5) e (6), nós concluímos a partir de (4) que

lim
n→∞

MZn(t) = et2/2,

ou seja, quando n→∞, o limite da FGM de Zn é a FGM de uma VA com

distribuição normal padrão.

Ufa!!!

Magalhães, TM (ICE-UFJF) Teoremas limites 14 de janeiro de 2026 26 / 35



Teorema central do limite

O teorema central do limite foi demonstrado por Lyapunov (1901). Antes,

a demonstração foi originalmente feita por de Moivre (1733), para o caso

de uma sequência de variáveis aleatórias com distribuição Bernoulli, com

p = 1/2.

Laplace (1812) estendeu este caso para um p arbitrário, nestas

condições,

Sn − np√
np(1− p)

d−→ N(0, 1).
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Teorema central do limite

Seja X1,X2, . . . uma sequência de variáveis aleatórias independentes, com

E(Xi) = µi e Var(Xi) = σ2
i . Se (a) as variáveis aleatórias Xi forem limitadas

uniformemente, isto é, para algum M, P(|Xi | < M) = 1, para todo i ,

e (b)∑∞
i=1 σ

2
i =∞, então ∑n

i=1(Xi − µi)√∑n
i=1 σ

2
i

d−→ N(0, 1).

Resultado demonstrado por Lindeberg (1922).
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Limites de binomiais para Poisson

Se Xn ∼ binomial(n, pn), n ≥ 1 e lim
n→∞

npn = λ > 0, então

Xn
d−→ Poisson(λ).
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