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Os mais importantes resultados tedricos na teoria da probabilidade sdo os

teoremas limites (Ross, 2010). Destes o5 mais importantes <50 as leis dos

grandes niimeros e os teoremas centrais do limite.




Motivacao

Os mais importantes resultados tedricos na teoria da probabilidade sdo os
teoremas limites (Ross, 2010). Destes, os mais importantes sdo as leis dos

grandes niimeros e os teoremas centrais do limite.
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Motivacao

Usualmente, teoremas s3o considerados leis de grandes nimeros se estive-
rem interessados em enunciar condi¢cdes nas quais a média de uma sequéncia

de variaveis aleatdrias converge (de alguma forma) para a média esperada.
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Motivacao

Por outro lado, teoremas centrais do limite estdo interessados em de-
terminar condicbes nas quais a soma de um grande ndmero de varidveis
aleatérias possui uma distribuicdo de probabilidade que é aproximadamente

normal.
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Lei fraca dos grandes nimeros

Seja X1, Xa, ... uma sequéncia de varidveis aleatérias independentes e iden-

ticamente distribuidas, com média finita, isto é, E(X,) = p < oo, n > 1.
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Lei fraca dos grandes nimeros

Seja X1, Xa, ... uma sequéncia de varidveis aleatérias independentes e iden-
ticamente distribuidas, com média finita, isto é, E(X,) = p < oo, n > 1.

As somas parciais S, = X1 + - - - + X, satisfazem

s
SN
n
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Lei fraca dos grandes nimeros

Seja X1, Xa, ... uma sequéncia de varidveis aleatérias independentes e iden-
ticamente distribuidas, com média finita, isto é, E(X,) = p < oo, n > 1.

As somas parciais S, = X1 + - - - + X, satisfazem

s
SN
n

Prova: ver exercicio da aula passada.
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A lei fraca dos grandes ndmeros foi demonstrada por Khinchine (1929).

Antes, a demonstracdo foi originalmente feita por Bernoulli (1713), para o

caso de uma sequéncia de varidveis aleatérias com distribuicao Bernoulli,




Lei fraca dos grandes nimeros

A lei fraca dos grandes ndmeros foi demonstrada por Khinchine (1929).
Antes, a demonstrac3o foi originalmente feita por Bernoulli (1713), para o

caso de uma sequéncia de variaveis aleatérias com distribuicdo Bernoulli,
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Lei fraca dos grandes nimeros

A lei fraca dos grandes ndmeros foi demonstrada por Khinchine (1929).
Antes, a demonstrac3o foi originalmente feita por Bernoulli (1713), para o
caso de uma sequéncia de variaveis aleatérias com distribuicdo Bernoulli,

para estas condicoes,

S
on e
n
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Seja X1, X2, ... uma sequéncia de varidveis aleatérias e consideremos S, =

X1+ + Xy Oc

n—o00 n2




Lei fraca dos grandes nimeros

Seja Xi, Xo, ... uma sequéncia de variaveis aleatérias e consideremos S, =

X1+ -+ Xp. Se

V
lim 72"(25") =0,
n—00 n
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Lei fraca dos grandes nimeros

Seja Xi, Xo, ... uma sequéncia de variaveis aleatérias e consideremos S, =

X1+ -+ Xp. Se

n—o00 n2

entao
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Lei fraca dos grandes nimeros

Seja Xi, Xo, ... uma sequéncia de variaveis aleatérias e consideremos S, =

X1+ -+ Xp. Se

V
lim 72“(25") =0,
n—00 n

entao

Sn— ,I7E(5n) Poo.

Este caso, mais geral, foi demonstrado por Chebyshev (1867).

g f].
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Lei forte dos grandes nimeros

A lei forte dos grandes niimeros é provavelmente o resultado mais famoso na

teoria da probabilidade (Ross, 2010).
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Lei forte dos grandes nimeros

A lei forte dos grandes niimeros é provavelmente o resultado mais famoso na
teoria da probabilidade (Ross, 2010). Ela diz que a média de uma sequéncia
de variaveis aleatdrias independentes com mesma distribuicdo converge, com

probabilidade 1, para a média daquela distribuicdo.
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Lei forte dos grandes nimeros

Seja X1, Xo, ... uma sequéncia de variaveis aleatérias independentes e iden-

ticamente distribuidas, com média finita, ou seja, E(X,) = u < o0, n > 1.
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Lei forte dos grandes nimeros

Seja X1, Xo, ... uma sequéncia de variaveis aleatérias independentes e iden-
ticamente distribuidas, com média finita, ou seja, E(X,) = u < o0, n > 1.

As somas parciais S, = X1 + - - - + X,, satisfazem
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A lei forte dos grandes nimeros foi demonstrada por Kolmogorov (1933).

Antes, a demonstracdo foi originalmente feita por Borel (1909), para o caso

de uma sequéncia de varidveis aleatérias com distribuicdo Bernoulli,




Lei forte dos grandes nimeros

A lei forte dos grandes niimeros foi demonstrada por Kolmogorov (1933).
Antes, a demonstracdo foi originalmente feita por Borel (1909), para o caso

de uma sequéncia de varidveis aleatérias com distribuicao Bernoulli,
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Lei forte dos grandes nimeros

A lei forte dos grandes niimeros foi demonstrada por Kolmogorov (1933).
Antes, a demonstracdo foi originalmente feita por Borel (1909), para o caso
de uma sequéncia de varidveis aleatérias com distribuicao Bernoulli, para

estas condicoes,

o @,
n
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Teorema central do limite

O teorema central do limite é um dos resultados mais extraordinarios na

teoria da probabilidade (Ross, 2010).
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Teorema central do limite

O teorema central do limite é um dos resultados mais extraordinarios na
teoria da probabilidade (Ross, 2010). Em linhas gerais, ele diz que a soma
de um grande nimero de varidveis aleatérias independentes tem uma distri-

buicdo que é aproximadamente normal.
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Teorema central do limite

Com isso, ele ndo somente fornece um método simples para o calculo de
probabilidades aproximadas para somas de varidveis aleatérias independen-
tes, mas também ajuda a explicar o extraordinario fato de que frequéncias
empiricas de muitas populacdes naturais exibem curvas na forma de um sino

(isto é, normais).
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Teorema central do limite

Seja X1, Xp, ... uma sequéncia de varidveis aleatérias independentes e iden-

ticamente distribuidas com média 1 e varidncia .
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Teorema central do limite

Seja X1, Xp, ... uma sequéncia de varidveis aleatérias independentes e iden-
ticamente distribuidas com média y e variancia 0. Seja S, = X1+ -+ X,

entao

Sn—np a
0—7\/5 H N(O, 1).
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Prova. Seja

_ S Y (Xi—p) XY
ay/n ay/n ovn

A funcdo geradora de momentos de Z,, Mz (t), é dada por

Zn

Mz, (t) = E(e?") = E (exp {tZ,}) = E (exp {tzj\%\’f })

—]E(exp{ ' (Y1+Y2+--~+Yn)}>.

[oRVAL




Teorema central do limite

Prova. Seja

CSe—m S —p) XY
o/n o/n oV

A func3o geradora de momentos de Z,, Mz (t), é dada por

Zp

Mz, (t) = E(e") = E (exp {tZ,}) = E (exp {t U%Y }>

:E<exp{a\tﬁ(Y1+ Yo+ -+ Y,,)}).

:.ufjf
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Teorema central do limite

Dando prosseguimento, nds temos que

Mzn(t):E(exp{a\tﬁYl} xexp{ Y,
fonl ) on )
e(eo{ )] = [ (57)]

LD.

~ufjf
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Teorema central do limite

Dando prosseguimento, nds temos que

Mz, (t) = E (exp{gtﬁyl} s ex"{ "))
nd- (exp {g\t/ﬁyl}) - (EXP{ \f }) (1)
LD g <exp{a\tﬁyl}>} [MYl ( >

Ou seja, a FGM da VA Z,, avaliada no ponto t, pode ser escrita como uma

funcdo da FGM da VA Y; = X; — p, avaliada no ponto t/o+/n.

~ufjf
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Teorema central do limite

Antes de nds continuarmos, nds iremos discutir algumas propriedades da

FGM de Y7 = Xi — p e, por simplicidade, avaliada no ponto t.
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Teorema central do limite

Antes de nds continuarmos, nds iremos discutir algumas propriedades da
FGM de Y; = Xi — p e, por simplicidade, avaliada no ponto t. Usando

série de Taylor (1715) até o primeiro termo e em torno de t = 0,
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Teorema central do limite

Antes de nds continuarmos, nds iremos discutir algumas propriedades da
FGM de Y; = Xi — p e, por simplicidade, avaliada no ponto t. Usando
série de Taylor (1715) até o primeiro termo e em torno de t = 0, nés temos

que

e (n)
() = > 0

n=0

t2
t" = M(0) + t MU(0) + = MP(s),  (2)

n! 2
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Teorema central do limite

Antes de nds continuarmos, nds iremos discutir algumas propriedades da
FGM de Y; = Xi — p e, por simplicidade, avaliada no ponto t. Usando
série de Taylor (1715) até o primeiro termo e em torno de t = 0, nés temos

que

e (n)
() = > 0

n=0

t2
t" = M(0) + t MU(0) + = MP(s),  (2)

n! 2

emque0<s<te MS,Z)(-) é a n-ésima derivada de My, (-).
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Notem que, pelas propriedades da FGM, nos temos que

M (0) = My, (0) =1,
/V’g/ll)(o) =E(Y1) = E(X1 — u) =0,

ME(0) = E(Y?) = E[(X: — u)?] = o*.




Teorema central do limite

Notem que, pelas propriedades da FGM, néds temos que
0
M{E(0) = My, (0) = 1,

/V/(yll)(o) =E(Y1) = E(X1 —p) =0,

ME(0) = E(Y?) = E[(X1 — u)?] = o*.
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Usando os dois primeiros resultados anteriores, nés podemos simplificar (2),

da seguinte forma

o)
My, (£) = 1+ - M{(s).




Teorema central do limite

Usando os dois primeiros resultados anteriores, nés podemos simplificar (2),

da seguinte forma

t2 2
My, (t) =1+ EMQ(S).
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Teorema central do limite

Usando os dois primeiros resultados anteriores, nés podemos simplificar (2),

da seguinte forma
t? (2)
Myl(t) =1+ 5 MY1 (S)

Somando e subtraindo 0%t2/2 na equagdo acima,
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A equagdo (3) é a FGM de Yi. Como visto anteriormente, o PG de

Z, é uma funcdo da FGM de Y1, avaliada em t/o+/n.




Teorema central do limite

A equagdo (3) é a FGM de Y;. Como visto anteriormente, a FGM de

Z, é uma funcdo da FGM de Y1, avaliada em t/o+/n.
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Teorema central do limite

A equagdo (3) é a FGM de Y;. Como visto anteriormente, a FGM de
Z, é uma funcdo da FGM de Y1, avaliada em t/o\/n. Substituindo (3),

avaliando no ponto t/o/n, em (1),
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Teorema central do limite

A equagdo (3) é a FGM de Y;. Como visto anteriormente, a FGM de
Z, é uma funcdo da FGM de Y1, avaliada em t/o\/n. Substituindo (3),

avaliando no ponto t/ov/n, em (1), nés temos que

#2
2n

My (t) = {1 + o+ [M@(s) - 0—2} 2;;} : (4)
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Teorema central do limite

A equagdo (3) é a FGM de Y;. Como visto anteriormente, a FGM de
Z, é uma funcdo da FGM de Y1, avaliada em t/o\/n. Substituindo (3),

avaliando no ponto t/ov/n, em (1), nés temos que

Mzn(t):{1+i+[/w(y2l)(s)_gz} P2 } (4)

em que 0 < s < t/oy/ne —hoy/n<t< hoyn.

~ufjf
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2) . .
Para n — 0o segue-se que s — 0 ¢ como Mg,l) é continua na origem,

lim [MP(s) - 02| = 0. (5)

s—0




@) .
Y

Para n — oo segue-se que s — 0 e como My’ é continua na origem,

[MP(s) - 0?] = 0. (5)

lim
s—0

Lembrando o seguinte resultado do célculo,

lim (1 + i) e (6)

n—o0

quando a, — a.




Teorema central do limite

Para n — oo segue-se que s — 0 e como M§,21) é continua na origem,
: @y _ 2] —
lim (MP(s) - 02| = 0. (5)

Lembrando o seguinte resultado do célculo,

. an n_ a
i (1+2) = e ©

quando a, — a.
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Por (5) e (6), nés concluimos a partir de (4) que

. _ t2)2
nllggo MZ"(t) € ’

ou seja, quando n — oo, o limite da FGM de Z, é a FGM de uma VA com

distribuicao normal padr3o.




Teorema central do limite

Por (5) e (6), ndés concluimos a partir de (4) que

lim Mz (t) = et/?,

n—o0

ou seja, quando n — oo, o limite da FGM de Z, é a FGM de uma VA com

distribuicdo normal padrio.
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Teorema central do limite

Por (5) e (6), ndés concluimos a partir de (4) que

lim Mz (t) = et/?,

n—o0

ou seja, quando n — oo, o limite da FGM de Z, é a FGM de uma VA com

distribuicdo normal padrio.

Ufalll
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O teorema central do limite foi demonstrado por Lyapunov (1901). /ntes

a demonstrac3o foi originalmente feita por de Moivre (1733), para o caso

de uma sequéncia de varidveis aleatdrias com distribuicdo Bernoulli, com

p=1/2.




Teorema central do limite

O teorema central do limite foi demonstrado por Lyapunov (1901). Antes,
a demonstracdo foi originalmente feita por de Moivre (1733), para o caso

de uma sequéncia de varidveis aleatérias com distribuicio Bernoulli, com

p=1/2.
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Teorema central do limite

O teorema central do limite foi demonstrado por Lyapunov (1901). Antes,
a demonstracdo foi originalmente feita por de Moivre (1733), para o caso
de uma sequéncia de varidveis aleatérias com distribuicio Bernoulli, com

p = 1/2. Laplace (1812) estendeu este caso para um p arbitrério,
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Teorema central do limite

O teorema central do limite foi demonstrado por Lyapunov (1901). Antes,
a demonstracdo foi originalmente feita por de Moivre (1733), para o caso
de uma sequéncia de varidveis aleatérias com distribuicio Bernoulli, com
p = 1/2. Laplace (1812) estendeu este caso para um p arbitrério, nestas

condicdes,

_Sn =P 4N, 1),
np(1—p)
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Seja Xi, Xp,... uma sequéncia de variaveis aleatérias independentes, com

E(X;) = i e Var(X;) = 02. Sc () as variaveis aleatorias X forem limitadas

uniformemente, isto é, para algum M, P(|X;| < M) =1, para todo i,




Teorema central do limite

Seja X1, X5, ... uma sequéncia de varidveis aleatérias independentes, com
E(X;) = pi e Var(X;) = 0?. Se (a) as varidveis aleatérias X; forem limitadas

uniformemente, isto ¢, para algum M, P(|X;| < M) = 1, para todo i,
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Teorema central do limite

Seja X1, X5, ... uma sequéncia de varidveis aleatérias independentes, com
E(X;) = pi e Var(X;) = 0?. Se (a) as varidveis aleatérias X; forem limitadas
uniformemente, isto ¢, para algum M, P(|X;| < M) =1, para todo i, e (b)

fe’e) 2
i=10j = 00,
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Teorema central do limite

Seja X1, X5, ... uma sequéncia de varidveis aleatérias independentes, com

E(X;) = pi e Var(X;) = 0?. Se (a) as varidveis aleatérias X; forem limitadas

uniformemente, isto ¢, para algum M, P(|X;| < M) =1, para todo i, e (b)
%, 0% = 00, entdo

Z?:l(xi - Mi)

~4, N(0,1).
Yo7

Magalhdes, TM (ICE-UFJF) Teoremas limites 14 de janeiro de 2026 28/35



Teorema central do limite

Seja X1, X5, ... uma sequéncia de varidveis aleatérias independentes, com
E(X;) = pi e Var(X;) = 0?. Se (a) as varidveis aleatérias X; forem limitadas
uniformemente, isto ¢, para algum M, P(|X;| < M) =1, para todo i, e (b)
%, 0% = 00, entdo
>im (Xi — i)
Yiof

Resultado demonstrado por Lindeberg (1922).

~4, N(0,1).
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Se X, ~ binomial(n, p,), n>1e Jim np, = A >0, crico

X, L Poisson(\).




Se X, ~ binomial(n, p,), n>1e Jim np, = A >0, entdo

X, % Poisson(A).
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