Tiago M. Magalhães

Departamento de Estatística - ICE-UFJF

Juiz de Fora, 15 de maio de 2024

Roteiro

- Introdução
- 2 Identificando multicolinearidade
- 3 Regressão ridge
- 4 Aplicação
- 5 Referências bibliográficas

Roteiro

- Introdução
- 2 Identificando multicolinearidade
- 3 Regressão ridge
- 4 Aplicação
- 5 Referências bibliográficas

Suponham que Y_1, Y_2, \ldots, Y_n tais que

$$Y_{\ell} = \mathbf{x}_{\ell}^{\mathsf{T}} \boldsymbol{\beta} + \boldsymbol{\varepsilon}_{\ell}, \ \ell = 1, 2, \dots, n, \tag{1}$$

Suponham que Y_1, Y_2, \ldots, Y_n tais que

$$Y_{\ell} = \mathbf{x}_{\ell}^{\top} \boldsymbol{\beta} + \varepsilon_{\ell}, \ \ell = 1, 2, \dots, n, \tag{1}$$

em que $\mathbf{x}_{\ell} = (\mathbf{x}_{\ell 1}, \mathbf{x}_{\ell 2}, \dots, \mathbf{x}_{\ell p})^{\top}$ é conhecido, $\boldsymbol{\beta} = (\beta_{1}, \beta_{2}, \dots, \beta_{p})^{\top}$ é um vetor de parâmetros desconhecidos a serem estimados, $\varepsilon_{1}, \varepsilon_{2}, \dots, \varepsilon_{n}$ são variáveis aleatórias independentes e com a mesma variância σ^{2} , também desconhecida, a ser estimada.

Suponham que Y_1, Y_2, \ldots, Y_n tais que

$$Y_{\ell} = \mathbf{x}_{\ell}^{\mathsf{T}} \boldsymbol{\beta} + \varepsilon_{\ell}, \ \ell = 1, 2, \dots, n, \tag{1}$$

em que $\mathbf{x}_{\ell} = (x_{\ell 1}, x_{\ell 2}, \dots, x_{\ell p})^{\top}$ é conhecido, $\boldsymbol{\beta} = (\beta_1, \beta_2, \dots, \beta_p)^{\top}$ é um vetor de parâmetros desconhecidos a serem estimados, $\varepsilon_1, \varepsilon_2, \dots, \varepsilon_n$ são variáveis aleatórias independentes e com a mesma variância σ^2 , também desconhecida, a ser estimada.

Forma matricial

A Equação (1) pode ser escrita de forma matricial, da seguinte forma:

$$\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon},\tag{2}$$

Forma matricial

A Equação (1) pode ser escrita de forma matricial, da seguinte forma:

$$\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon},\tag{2}$$

em que $\mathbf{Y} = (Y_1, Y_2, \dots, Y_n)^{\top}$, $\mathbf{X} = (\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n)^{\top}$ é a matriz de planejamento e $\boldsymbol{\varepsilon} = (\varepsilon_1, \varepsilon_2, \dots, \varepsilon_n)^{\top}$, com

$$\mathbb{E}(\varepsilon) = \mathbf{0} \text{ e Var}(\varepsilon) = \sigma^2 \mathbf{I}_n.$$

Forma matricial

A Equação (1) pode ser escrita de forma matricial, da seguinte forma:

$$\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon},\tag{2}$$

em que $\pmb{Y}=(Y_1,Y_2,\ldots,Y_n)^{\top}$, $\pmb{X}=(\pmb{x}_1,\pmb{x}_2,\ldots,\pmb{x}_n)^{\top}$ é a matriz de planejamento e $\pmb{\varepsilon}=(\varepsilon_1,\varepsilon_2,\ldots,\varepsilon_n)^{\top}$, com

$$\mathbb{E}(\boldsymbol{\varepsilon}) = \mathbf{0} \text{ e Var}(\boldsymbol{\varepsilon}) = \sigma^2 \boldsymbol{I}_n.$$

Resumindo,

• A relação entre as variáveis resposta e as preditoras é linear;

- A relação entre as variáveis resposta e as preditoras é linear;
- Os erros:

- A relação entre as variáveis resposta e as preditoras é linear;
- Os erros:
 - têm média zero;

- A relação entre as variáveis resposta e as preditoras é linear;
- Os erros:
 - têm média zero:
 - variância constante;

- A relação entre as variáveis resposta e as preditoras é linear;
- Os erros:
 - têm média zero;
 - variância constante;
 - e são não correlacionados.

- A relação entre as variáveis resposta e as preditoras é linear;
- Os erros:
 - têm média zero;
 - variância constante;
 - e são não correlacionados.

A utilidade de um modelo de regressão pode ser impactada pela multicolinearidade, uma dependência (aproximadamente) linear entre as variáveis regressoras,

$$\sum_{m=1}^{p} t_m \mathbf{x}_m = \mathbf{0}. \tag{3}$$

A utilidade de um modelo de regressão pode ser impactada pela multicolinearidade, uma dependência (aproximadamente) linear entre as variáveis regressoras,

$$\sum_{m=1}^{p} t_m \mathbf{x}_m = \mathbf{0}. \tag{3}$$

Pois nestas situações, a capacidade de estimar os coeficientes de regressão estará comprometida. Uma dependência linear exata resulta em $\mathbf{X}^{\top}\mathbf{X}$ singular, isto é, esta matriz não pode ser invertida.

A utilidade de um modelo de regressão pode ser impactada pela multicolinearidade, uma dependência (aproximadamente) linear entre as variáveis regressoras,

$$\sum_{m=1}^{p} t_m \mathbf{x}_m = \mathbf{0}. \tag{3}$$

Pois nestas situações, a capacidade de estimar os coeficientes de regressão estará comprometida. Uma dependência linear exata resulta em $\mathbf{X}^{\top}\mathbf{X}$ singular, isto é, esta matriz não pode ser invertida.

Padronização

Para nós lidarmos com a multicolinearidade, primeiramente, nós precisamos padronizar as variáveis, utilizando a **escala de tamanho unitário**, i.e.:

$$Y_{\ell}^* = \frac{Y_{\ell} - \bar{Y}}{S_Y} e x_{\ell m}^* = \frac{x_{\ell m} - \bar{x}_m}{s_m},$$

Padronização

Para nós lidarmos com a multicolinearidade, primeiramente, nós precisamos padronizar as variáveis, utilizando a **escala de tamanho unitário**, i.e.:

$$Y_{\ell}^* = \frac{Y_{\ell} - \bar{Y}}{S_Y} e x_{\ell m}^* = \frac{x_{\ell m} - \bar{x}_m}{s_m},$$

em que S_Y e s_m são, respectivamente, as raízes quadradas de

$$S_Y^2 = \sum_{\ell=1}^n (Y_\ell - \bar{Y})^2 \in S_m^2 = \sum_{\ell=1}^n (x_{\ell m} - \bar{x}_m)^2,$$

 $\ell = 1, 2, \dots, n \in m = 1, 2, \dots, p.$

Padronização

Para nós lidarmos com a multicolinearidade, primeiramente, nós precisamos padronizar as variáveis, utilizando a **escala de tamanho unitário**, i.e.:

$$Y_{\ell}^* = rac{Y_{\ell} - ar{Y}}{S_Y} \ e \ x_{\ell m}^* = rac{x_{\ell m} - ar{x}_m}{s_m},$$

em que S_Y e s_m são, respectivamente, as raízes quadradas de

$$S_Y^2 = \sum_{\ell=1}^n (Y_\ell - \bar{Y})^2 \ \mathrm{e} \ S_m^2 = \sum_{\ell=1}^n (x_{\ell m} - \bar{x}_m)^2,$$

$$\ell = 1, 2, \ldots, n \in m = 1, 2, \ldots, p.$$

① Cada regressor e a resposta têm média amostral zero e tamanho unitário, ou seja, $\sqrt{\sum_{\ell=1}^n (x_{\ell m}^* - \bar{x}_m^*)^2} = 1;$

- ① Cada regressor e a resposta têm média amostral zero e tamanho unitário, ou seja, $\sqrt{\sum_{\ell=1}^n (x_{\ell m}^* \bar{x}_m^*)^2} = 1;$
- ② As matrizes $X^{*\top}X^{*}$ e $X^{*\top}y^{*}$ geram, respectivamente, as correlações entre as covariáveis e das covariáveis com a resposta;

- ① Cada regressor e a resposta têm média amostral zero e tamanho unitário, ou seja, $\sqrt{\sum_{\ell=1}^n (x_{\ell m}^* \bar{x}_m^*)^2} = 1;$
- ② As matrizes $\mathbf{X}^{*\top}\mathbf{X}^{*}$ e $\mathbf{X}^{*\top}\mathbf{y}^{*}$ geram, respectivamente, as correlações entre as covariáveis e das covariáveis com a resposta;
- Se o modelo tem intercepto, o procedimento de padronização das variáveis o removerá;

- ① Cada regressor e a resposta têm média amostral zero e tamanho unitário, ou seja, $\sqrt{\sum_{\ell=1}^n (x_{\ell m}^* \bar{x}_m^*)^2} = 1;$
- ② As matrizes $X^{*\top}X^*$ e $X^{*\top}y^*$ geram, respectivamente, as correlações entre as covariáveis e das covariáveis com a resposta;
- Se o modelo tem intercepto, o procedimento de padronização das variáveis o removerá;
- A partir das estimativas do modelo padronizado, pode-se chegar nas estimativas dos parâmetros do modelo original, ver Montgomery et al. (2021, p. 119).

- ① Cada regressor e a resposta têm média amostral zero e tamanho unitário, ou seja, $\sqrt{\sum_{\ell=1}^n (x_{\ell m}^* \bar{x}_m^*)^2} = 1;$
- ② As matrizes $X^{*\top}X^*$ e $X^{*\top}y^*$ geram, respectivamente, as correlações entre as covariáveis e das covariáveis com a resposta;
- Se o modelo tem intercepto, o procedimento de padronização das variáveis o removerá;
- 4 A partir das estimativas do modelo padronizado, pode-se chegar nas estimativas dos parâmetros do modelo original, ver Montgomery et al. (2021, p. 119).

Lembrando que existe uma segunda possibilidade de padronização, denominada de **escala normal de unidade**, feito da seguinte forma:

$$Y_{\ell}^* = \frac{Y_{\ell} - \bar{Y}}{S_Y} e x_{\ell m}^* = \frac{x_{\ell m} - \bar{x}_m}{s_m},$$

Lembrando que existe uma segunda possibilidade de padronização, denominada de **escala normal de unidade**, feito da seguinte forma:

$$Y_{\ell}^* = \frac{Y_{\ell} - \bar{Y}}{S_Y} e x_{\ell m}^* = \frac{x_{\ell m} - \bar{x}_m}{s_m},$$

em que S_Y e s_m são, respectivamente, as raízes quadradas de

$$S_Y^2 = \frac{\sum_{\ell=1}^n (Y_\ell - \bar{Y})^2}{n-1} e s_m^2 = \frac{\sum_{\ell=1}^n (x_{\ell m} - \bar{x}_m)^2}{n-1},$$

$$\ell = 1, 2, \dots, n \in m = 1, 2, \dots, p.$$

Lembrando que existe uma segunda possibilidade de padronização, denominada de **escala normal de unidade**, feito da seguinte forma:

$$Y_{\ell}^* = \frac{Y_{\ell} - \bar{Y}}{S_Y} e x_{\ell m}^* = \frac{x_{\ell m} - \bar{x}_m}{s_m},$$

em que S_Y e s_m são, respectivamente, as raízes quadradas de

$$S_Y^2 = \frac{\sum_{\ell=1}^n (Y_\ell - \bar{Y})^2}{n-1} e s_m^2 = \frac{\sum_{\ell=1}^n (x_{\ell m} - \bar{x}_m)^2}{n-1},$$

$$\ell = 1, 2, \ldots, n \in m = 1, 2, \ldots, p.$$

Observação

Todos os regressores transformados e as respostas transformadas têm média amostral zero e variância amostral um.

Observação

Todos os regressores transformados e as respostas transformadas têm média amostral zero e variância amostral um.

Observação

Nesta apresentação, nós iremos que assumir que (1) ou, equivalentemente,

(2) estão na **escala de tamanho unitário**.

Observação

Nesta apresentação, nós iremos que assumir que (1) ou, equivalentemente,

(2) estão na **escala de tamanho unitário**.

Roteiro

- 1 Introdução
- 2 Identificando multicolinearidade
- 3 Regressão ridge
- 4 Aplicação
- 5 Referências bibliográficas

Fontes de multicolinearidade

Existem quatro fontes de multicolinearidade:

 A forma como os dados foram coletados. Apenas uma subamostra de um espaco amostral inteiro foi coletada;

Fontes de multicolinearidade

Existem quatro fontes de multicolinearidade:

- A forma como os dados foram coletados. Apenas uma subamostra de um espaco amostral inteiro foi coletada;
- 2 Restrições do modelo ou da população. Dados composicionais;

Fontes de multicolinearidade

Existem quatro fontes de multicolinearidade:

- A forma como os dados foram coletados. Apenas uma subamostra de um espaco amostral inteiro foi coletada;
- Restrições do modelo ou da população. Dados composicionais;
- 3 Especificação do modelo. Modelo de regressão polinomial;

Fontes de multicolinearidade

Existem quatro fontes de multicolinearidade:

- A forma como os dados foram coletados. Apenas uma subamostra de um espaco amostral inteiro foi coletada;
- Restrições do modelo ou da população. Dados composicionais;
- 3 Especificação do modelo. Modelo de regressão polinomial;
- Modelo super definido. Conjunto de dados com mais covariáveis do que observações (high dimensional data).

Fontes de multicolinearidade

Existem quatro fontes de multicolinearidade:

- A forma como os dados foram coletados. Apenas uma subamostra de um espaco amostral inteiro foi coletada;
- Restrições do modelo ou da população. Dados composicionais;
- 3 Especificação do modelo. Modelo de regressão polinomial;
- 4 Modelo super definido. Conjunto de dados com mais covariáveis do que observações (high dimensional data).

No caso de variáveis padronizadas, $\mathbf{X}^{T}\mathbf{X}$ representa uma matriz de correlações. Se algum elemento, em módulo, desta matriz for próximo de 1, haverá um forte indício de multicolinearidade. Porém, o contrário não será verdadeiro.

No caso de variáveis padronizadas, $\mathbf{X}^{\top}\mathbf{X}$ representa uma matriz de correlações. Se algum elemento, em módulo, desta matriz for próximo de 1, haverá um forte indício de multicolinearidade. Porém, o contrário não será verdadeiro.

Uma alta multicolinearidade pode resultar em variâncias e covariâncias altas das estimativas. Além disso, o m-ésimo, $m=1,2,\ldots,p$, elemento da diagonal principal de $(\boldsymbol{X}^{\top}\boldsymbol{X})^{-1}$ é chamado de fator de inflação da variância (variance inflation factors, VIF).

Uma alta multicolinearidade pode resultar em variâncias e covariâncias altas das estimativas. Além disso, o m-ésimo, $m=1,2,\ldots,p$, elemento da diagonal principal de $(\boldsymbol{X}^{\top}\boldsymbol{X})^{-1}$ é chamado de fator de inflação da variância (variance inflation factors, VIF).

O VIF podem ser escrito como:

$$VIF_m = \frac{1}{1 - R_m^2},$$

O VIF podem ser escrito como:

$$\mathsf{VIF}_m = \frac{1}{1 - R_m^2},$$

em que R_m^2 é o coeficiente de determinação múltiplo da regressão entre x_m com as demais covariáveis.

O VIF podem ser escrito como:

$$\mathsf{VIF}_m = \frac{1}{1 - R_m^2},$$

em que R_m^2 é o coeficiente de determinação múltiplo da regressão entre x_m com as demais covariáveis. Um ${\sf VIF}_m > 5$ indica um forte indício de multicolinearidade. Consequentemente, regressores com valores de ${\sf VIF}$, provavelmente, foram mal estimados.

O VIF podem ser escrito como:

$$\mathsf{VIF}_m = \frac{1}{1 - R_m^2},$$

em que R_m^2 é o coeficiente de determinação múltiplo da regressão entre x_m com as demais covariáveis. Um ${\sf VIF}_m > 5$ indica um forte indício de multicolinearidade. Consequentemente, regressores com valores de ${\sf VIF}$, provavelmente, foram mal estimados.

Notem que, o **comprimento** do intervalo de confiança (IC) para β_m , com coeficiente de confiança $(1-\alpha)$ é dado por

$$L_m = 2t(1 - \alpha/2; n - p)\sqrt{\sigma^2 VIF_m}, \tag{4}$$

Notem que, o **comprimento** do intervalo de confiança (IC) para β_m , com coeficiente de confiança $(1-\alpha)$ é dado por

$$L_m = 2t(1 - \alpha/2; n - p)\sqrt{\sigma^2 VIF_m}, \tag{4}$$

em que $t(1-\alpha/2;n-p)$ é o quantil $100(1-\alpha/2)\%$ da distribuição t de Student (Gosset "Student", 1908), com n-p graus de liberdade, $m=1,2,\ldots,p$.

Notem que, o **comprimento** do intervalo de confiança (IC) para β_m , com coeficiente de confiança $(1-\alpha)$ é dado por

$$L_m = 2t(1 - \alpha/2; n - p)\sqrt{\sigma^2 VIF_m}, \tag{4}$$

em que $t(1-\alpha/2;n-p)$ é o quantil $100(1-\alpha/2)\%$ da distribuição t de Student (Gosset "Student", 1908), com n-p graus de liberdade, $m=1,2,\ldots,p$. Observação: se o modelo original tivesse intercepto, seriam n-p-1 graus de liberdade.

Notem que, o **comprimento** do intervalo de confiança (IC) para β_m , com coeficiente de confiança $(1-\alpha)$ é dado por

$$L_m = 2t(1 - \alpha/2; n - p)\sqrt{\sigma^2 VIF_m}, \tag{4}$$

em que $t(1-\alpha/2;n-p)$ é o quantil $100(1-\alpha/2)\%$ da distribuição t de Student (Gosset "Student", 1908), com n-p graus de liberdade, $m=1,2,\ldots,p$. **Observação:** se o modelo original tivesse intercepto, seriam n-p-1 graus de liberdade.

Se as covariáveis forem ortogonais, o comprimento do IC (4) seria dado por

$$L^* = 2t(1 - \alpha/2; n - p)\sqrt{\sigma^2}.$$

Se as covariáveis forem ortogonais, o comprimento do IC (4) seria dado por

$$L^* = 2t(1 - \alpha/2; n - p)\sqrt{\sigma^2}.$$

E a razão $L_m/L^*=\sqrt{{\sf VIF}_m}$ é um indicador de quão longe o IC está do cenário ideal, de ortogonalidade.

Se as covariáveis forem ortogonais, o comprimento do IC (4) seria dado por

$$L^* = 2t(1 - \alpha/2; n - p)\sqrt{\sigma^2}.$$

E a razão $L_m/L^*=\sqrt{{\sf VIF}_m}$ é um indicador de quão longe o IC está do cenário ideal, de ortogonalidade.

Uma alta multicolinearidade também afeta as estimativa dos parâmetros, resultando em valores altos, em módulo. Seja a distância quadrada entre a estimativa e valor verdadeiro, i.e.,

Uma alta multicolinearidade também afeta as estimativa dos parâmetros, resultando em valores altos, em módulo. Seja a distância quadrada entre a estimativa e valor verdadeiro, i.e.,

$$L_1^2 = (\widehat{\beta} - \beta)^{\top} (\widehat{\beta} - \beta). \tag{5}$$

Uma alta multicolinearidade também afeta as estimativa dos parâmetros, resultando em valores altos, em módulo. Seja a distância quadrada entre a estimativa e valor verdadeiro, i.e.,

$$L_1^2 = (\widehat{\beta} - \beta)^{\top} (\widehat{\beta} - \beta). \tag{5}$$

De (5), nós temos que:

$$\mathbb{E}(L_1^2) = \mathbb{E}\left\{ (\widehat{\beta} - \beta)^{\top} (\widehat{\beta} - \beta) \right\} = \sigma^2 \operatorname{tr}\left\{ (\boldsymbol{X}^{\top} \boldsymbol{X})^{-1} \right\},$$
(6)
$$\operatorname{Var}(L_1^2) = 2\sigma^4 \operatorname{tr}\left\{ (\boldsymbol{X}^{\top} \boldsymbol{X})^{-1} \right\}.$$

De (5), nós temos que:

$$\mathbb{E}(L_1^2) = \mathbb{E}\left\{ (\widehat{\boldsymbol{\beta}} - \boldsymbol{\beta})^{\top} (\widehat{\boldsymbol{\beta}} - \boldsymbol{\beta}) \right\} = \sigma^2 \operatorname{tr}\left\{ (\boldsymbol{X}^{\top} \boldsymbol{X})^{-1} \right\},$$
(6)
$$\operatorname{Var}(L_1^2) = 2\sigma^4 \operatorname{tr}\left\{ (\boldsymbol{X}^{\top} \boldsymbol{X})^{-1} \right\}.$$

Além de,

$$\mathbb{E}(\widehat{\boldsymbol{\beta}}^{\top}\widehat{\boldsymbol{\beta}}) = \boldsymbol{\beta}^{\top}\boldsymbol{\beta} + \sigma^{2} \operatorname{tr} \left\{ (\boldsymbol{X}^{\top}\boldsymbol{X})^{-1} \right\}.$$

De (5), nós temos que:

$$\mathbb{E}(L_1^2) = \mathbb{E}\left\{ (\widehat{\boldsymbol{\beta}} - \boldsymbol{\beta})^{\top} (\widehat{\boldsymbol{\beta}} - \boldsymbol{\beta}) \right\} = \sigma^2 \operatorname{tr}\left\{ (\boldsymbol{X}^{\top} \boldsymbol{X})^{-1} \right\},$$
(6)
$$\operatorname{Var}(L_1^2) = 2\sigma^4 \operatorname{tr}\left\{ (\boldsymbol{X}^{\top} \boldsymbol{X})^{-1} \right\}.$$

Além de,

$$\mathbb{E}(\widehat{\boldsymbol{\beta}}^{\top}\widehat{\boldsymbol{\beta}}) = \boldsymbol{\beta}^{\top}\boldsymbol{\beta} + \sigma^{2} \mathsf{tr} \left\{ (\boldsymbol{X}^{\top}\boldsymbol{X})^{-1} \right\}.$$

Lembrando que tr $\{\cdot\}$ é o operador traço, a soma dos elementos da diagonal de uma matriz, equivalente a soma dos seus autovalores. Na presença de multicolinearidade, alguns autovalores de $X^{\top}X$ serão pequenos.

Lembrando que tr $\{\cdot\}$ é o operador traço, a soma dos elementos da diagonal de uma matriz, equivalente a soma dos seus autovalores. Na presença de multicolinearidade, alguns autovalores de $\pmb{X}^{\top}\pmb{X}$ serão pequenos. Seja

$$\lambda_m > 0$$
, o *m*-ésimo autovalor de $\boldsymbol{X}^{\top}\boldsymbol{X}$, $m = 1, 2, \dots, p$,

Lembrando que tr $\{\cdot\}$ é o operador traço, a soma dos elementos da diagonal de uma matriz, equivalente a soma dos seus autovalores. Na presença de multicolinearidade, alguns autovalores de $\boldsymbol{X}^{\top}\boldsymbol{X}$ serão pequenos. Seja $\lambda_m>0$, o m-ésimo autovalor de $\boldsymbol{X}^{\top}\boldsymbol{X}$, $m=1,2,\ldots,p$, nós podemos escrever a esperança em (6) da seguinte forma:

$$\mathbb{E}(L_1^2) = \sigma^2 \sum_{m=1}^p \frac{1}{\lambda_m}.$$

Lembrando que tr $\{\cdot\}$ é o operador traço, a soma dos elementos da diagonal de uma matriz, equivalente a soma dos seus autovalores. Na presença de multicolinearidade, alguns autovalores de $\boldsymbol{X}^{\top}\boldsymbol{X}$ serão pequenos. Seja $\lambda_m>0$, o m-ésimo autovalor de $\boldsymbol{X}^{\top}\boldsymbol{X}$, $m=1,2,\ldots,p$, nós podemos escrever a esperança em (6) da seguinte forma:

$$\mathbb{E}(L_1^2) = \sigma^2 \sum_{m=1}^p \frac{1}{\lambda_m}.$$

Seja

$$\kappa = \frac{\max\left\{\lambda_1, \lambda_2, \dots, \lambda_\rho\right\}}{\min\left\{\lambda_1, \lambda_2, \dots, \lambda_\rho\right\}} = \frac{\lambda_{\max}}{\lambda_{\min}}.$$

A multicolinearidade se:

$$\left\{ \begin{array}{ll} \kappa < 100, & {\rm n\~ao}\ {\rm \'e}\ {\rm significativa} \\ \\ 100 < \kappa < 1.000, & {\rm \'e}\ {\rm moderada} \\ \\ \kappa > 1.000, & {\rm \'e}\ {\rm alta} \end{array} \right.$$

Seja

$$\kappa = \frac{\max\left\{\lambda_1, \lambda_2, \dots, \lambda_p\right\}}{\min\left\{\lambda_1, \lambda_2, \dots, \lambda_p\right\}} = \frac{\lambda_{\max}}{\lambda_{\min}}.$$

A multicolinearidade se:

$$\left\{ \begin{array}{ll} \kappa < 100, & {\sf n\~ao}\ {\sf \'e}\ {\sf significativa} \\ \\ 100 < \kappa < 1.000, & {\sf \'e}\ {\sf moderada} \\ \\ \kappa > 1.000, & {\sf \'e}\ {\sf alta} \end{array} \right.$$

Agora, para identificar as variáveis que estão envolvidas na multicolinearidade, seja

$$\kappa_m = \frac{\lambda_{\text{max}}}{\lambda_m},$$

$$m=1,2,\ldots,p.$$

Agora, para identificar as variáveis que estão envolvidas na multicolinearidade, seja

$$\kappa_m = \frac{\lambda_{\mathsf{max}}}{\lambda_m},$$

 $m=1,2,\ldots,p$. O número de casos em que $\kappa_m>1.000$, nos dará uma ideia de quantas colunas de $\pmb{X}^{\top}\pmb{X}$ são linearmente dependentes.

Agora, para identificar as variáveis que estão envolvidas na multicolinearidade, seja

$$\kappa_{m} = \frac{\lambda_{\text{max}}}{\lambda_{m}},$$

 $m=1,2,\ldots,p$. O número de casos em que $\kappa_m>1.000$, nos dará uma ideia de quantas colunas de $\pmb{X}^{\top}\pmb{X}$ são linearmente dependentes.

A matriz $\mathbf{X}^{\top}\mathbf{X}$ pode ser decomposta da seguinte forma:

$$\mathbf{X}^{\top}\mathbf{X} = \mathbf{T}^{\top}\mathbf{\Lambda}\mathbf{T},$$

em que Λ é uma matriz diagonal $p \times p$, sendo $\lambda_1, \lambda_2, \dots, \lambda_p$, os elementos da diagonal principal e T é uma matriz ortogonal $p \times p$, com a m-ésima coluna dada pelo m-ésimo autovetor de $X^T X$.

A matriz $\mathbf{X}^{\top}\mathbf{X}$ pode ser decomposta da seguinte forma:

$$\mathbf{X}^{\top}\mathbf{X} = \mathbf{T}^{\top}\mathbf{\Lambda}\mathbf{T},$$

em que Λ é uma matriz diagonal $p \times p$, sendo $\lambda_1, \lambda_2, \ldots, \lambda_p$, os elementos da diagonal principal e T é uma matriz ortogonal $p \times p$, com a m-ésima coluna dada pelo m-ésimo autovetor de $X^{\top}X$.

Se algum λ_m for próximo de zero, indicando uma relação, ao menos aproximada, de dependência linear dos dados, os elementos da coluna m de T, podem serem interpretados com os coeficientes que ponderam essa dependência, da forma vista em (3).

Roteiro

- 1 Introdução
- 2 Identificando multicolinearidade
- 3 Regressão ridge
- 4 Aplicação
- 5 Referências bibliográficas

Uma vez que, a presença da multicolinearidade é identificada, existem algumas maneiras de contorná-la:

 Coletando mais dados. Porém, isso não tem viabilidade prática, por conta do custo ou da existência dos dados;

Uma vez que, a presença da multicolinearidade é identificada, existem algumas maneiras de contorná-la:

- Coletando mais dados. Porém, isso não tem viabilidade prática, por conta do custo ou da existência dos dados;
- Reespecificando o modelo. Reescrevendo as variáveis independentes ou eliminando uma delas. Porém, isso poderá remover uma variável importante do modelo;

Uma vez que, a presença da multicolinearidade é identificada, existem algumas maneiras de contorná-la:

- Coletando mais dados. Porém, isso não tem viabilidade prática, por conta do custo ou da existência dos dados;
- Reespecificando o modelo. Reescrevendo as variáveis independentes ou eliminando uma delas. Porém, isso poderá remover uma variável importante do modelo;
- Utilizando uma outra metodologia, como a regressão ridge.

Uma vez que, a presença da multicolinearidade é identificada, existem algumas maneiras de contorná-la:

- Coletando mais dados. Porém, isso não tem viabilidade prática, por conta do custo ou da existência dos dados;
- Reespecificando o modelo. Reescrevendo as variáveis independentes ou eliminando uma delas. Porém, isso poderá remover uma variável importante do modelo;
- Utilizando uma outra metodologia, como a regressão ridge.

A presença de multicolinearidade causa uma inflação das variâncias dos estimadores. Como nós vimos, os estimadores de mínimos quadrados (EMQ), pelo Teorema de Gauss-Markov (Gauss, 1821), têm a menor variância entre todos os estimadores lineares não viesados.

A presença de multicolinearidade causa uma inflação das variâncias dos estimadores. Como nós vimos, os estimadores de mínimos quadrados (EMQ), pelo Teorema de Gauss-Markov (Gauss, 1821), têm a menor variância entre todos os estimadores lineares não viesados. Logo, um caminho para contornar a multicolinearidade é encontrar **estimadores viesados**.

A presença de multicolinearidade causa uma inflação das variâncias dos estimadores. Como nós vimos, os estimadores de mínimos quadrados (EMQ), pelo Teorema de Gauss-Markov (Gauss, 1821), têm a menor variância entre todos os estimadores lineares não viesados. Logo, um caminho para contornar a multicolinearidade é encontrar **estimadores viesados**.

Um método para encontrar estimadores viesados é a regressão *ridge* (rígida, em cristas, Hoerl e Kennard, 1970*b*,*a*). Esse estimador pode ser escrito como a solução da minimização de:

Um método para encontrar estimadores viesados é a regressão *ridge* (rígida, em cristas, Hoerl e Kennard, 1970*b*,*a*). Esse estimador pode ser escrito como a solução da minimização de:

$$Q = \sum_{\ell=1}^{n} \left[Y_{\ell} - (\beta_1 x_{\ell 1} + \beta_2 x_{\ell 2} + \dots + \beta_p x_{\ell p}) \right]^2 + k \sum_{m=1}^{p} \beta_m^2,$$
 (7)

Um método para encontrar estimadores viesados é a regressão *ridge* (rígida, em cristas, Hoerl e Kennard, 1970*b*,*a*). Esse estimador pode ser escrito como a solução da minimização de:

$$Q = \sum_{\ell=1}^{n} \left[Y_{\ell} - (\beta_1 x_{\ell 1} + \beta_2 x_{\ell 2} + \dots + \beta_p x_{\ell p}) \right]^2 + k \sum_{m=1}^{p} \beta_m^2,$$
 (7)

em que $k \ge 0$ é uma constante denominada de parâmetro de regularização. A segunda parte do lado de direito de (7), é um termo de "encolhimento".

Um método para encontrar estimadores viesados é a regressão *ridge* (rígida, em cristas, Hoerl e Kennard, 1970*b*,*a*). Esse estimador pode ser escrito como a solução da minimização de:

$$Q = \sum_{\ell=1}^{n} \left[Y_{\ell} - (\beta_1 x_{\ell 1} + \beta_2 x_{\ell 2} + \dots + \beta_p x_{\ell p}) \right]^2 + k \sum_{m=1}^{p} \beta_m^2,$$
 (7)

em que $k \ge 0$ é uma constante denominada de parâmetro de regularização. A segunda parte do lado de direito de (7), é um termo de "encolhimento".

Em notação matricial, (7) pode ser escrito como:

$$Q = (\mathbf{Y} - \mathbf{X}\beta)^{\top} (\mathbf{Y} - \mathbf{X}\beta) + k\beta^{\top}\beta.$$

Em notação matricial, (7) pode ser escrito como:

$$Q = (\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})^{\top}(\mathbf{Y} - \mathbf{X}\boldsymbol{\beta}) + k\boldsymbol{\beta}^{\top}\boldsymbol{\beta}.$$

O estimador *ridge* é dada por:

$$\widehat{\boldsymbol{\beta}}_{R} = (\boldsymbol{X}^{\top} \boldsymbol{X} + k \boldsymbol{I}_{p})^{-1} \boldsymbol{X}^{\top} \boldsymbol{Y}, \tag{8}$$

Em notação matricial, (7) pode ser escrito como:

$$Q = (\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})^{\top}(\mathbf{Y} - \mathbf{X}\boldsymbol{\beta}) + k\boldsymbol{\beta}^{\top}\boldsymbol{\beta}.$$

O estimador ridge é dada por:

$$\widehat{\boldsymbol{\beta}}_{R} = (\boldsymbol{X}^{\top} \boldsymbol{X} + k \boldsymbol{I}_{p})^{-1} \boldsymbol{X}^{\top} \boldsymbol{Y}, \tag{8}$$

em que k é uma constante definida pelo analista, quando k=0, o estimador

(8) coincide com o EMQ.

Em notação matricial, (7) pode ser escrito como:

$$Q = (\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})^{\top} (\mathbf{Y} - \mathbf{X}\boldsymbol{\beta}) + k\boldsymbol{\beta}^{\top} \boldsymbol{\beta}.$$

O estimador ridge é dada por:

$$\widehat{\boldsymbol{\beta}}_{R} = (\boldsymbol{X}^{\top} \boldsymbol{X} + k \boldsymbol{I}_{p})^{-1} \boldsymbol{X}^{\top} \boldsymbol{Y}, \tag{8}$$

em que k é uma constante definida pelo analista, quando k=0, o estimador

(8) coincide com o EMQ.

Nós podemos reescrever (8) da seguinte forma:

$$\widehat{\boldsymbol{\beta}}_{R} = (\boldsymbol{X}^{\top} \boldsymbol{X} + k \boldsymbol{I}_{p})^{-1} \boldsymbol{X}^{\top} \boldsymbol{Y}$$

$$= (\boldsymbol{X}^{\top} \boldsymbol{X} + k \boldsymbol{I}_{p})^{-1} (\boldsymbol{X}^{\top} \boldsymbol{X}) (\boldsymbol{X}^{\top} \boldsymbol{X})^{-1} \boldsymbol{X}^{\top} \boldsymbol{Y}$$

$$= \boldsymbol{Z} \iota \widehat{\boldsymbol{\beta}}.$$
(9)

Nós podemos reescrever (8) da seguinte forma:

$$\widehat{\boldsymbol{\beta}}_{R} = (\boldsymbol{X}^{\top} \boldsymbol{X} + k \boldsymbol{I}_{p})^{-1} \boldsymbol{X}^{\top} \boldsymbol{Y}$$

$$= (\boldsymbol{X}^{\top} \boldsymbol{X} + k \boldsymbol{I}_{p})^{-1} (\boldsymbol{X}^{\top} \boldsymbol{X}) (\boldsymbol{X}^{\top} \boldsymbol{X})^{-1} \boldsymbol{X}^{\top} \boldsymbol{Y}$$

$$= \boldsymbol{Z}_{k} \widehat{\boldsymbol{\beta}},$$
(9)

em que $\mathbf{Z}_k = (\mathbf{X}^{\top}\mathbf{X} + k\mathbf{I}_p)^{-1}(\mathbf{X}^{\top}\mathbf{X}).$

Nós podemos reescrever (8) da seguinte forma:

$$\widehat{\boldsymbol{\beta}}_{R} = (\boldsymbol{X}^{\top} \boldsymbol{X} + k \boldsymbol{I}_{p})^{-1} \boldsymbol{X}^{\top} \boldsymbol{Y}$$

$$= (\boldsymbol{X}^{\top} \boldsymbol{X} + k \boldsymbol{I}_{p})^{-1} (\boldsymbol{X}^{\top} \boldsymbol{X}) (\boldsymbol{X}^{\top} \boldsymbol{X})^{-1} \boldsymbol{X}^{\top} \boldsymbol{Y}$$

$$= \boldsymbol{Z}_{k} \widehat{\boldsymbol{\beta}},$$
(9)

em que $\mathbf{Z}_k = (\mathbf{X}^{\top}\mathbf{X} + k\mathbf{I}_p)^{-1}(\mathbf{X}^{\top}\mathbf{X}).$

Sejam as matrizes quadradas **A** e **B**, nós sabemos que,

$$(AB)^{-1} = B^{-1}A^{-1}.$$

Sejam as matrizes quadradas \boldsymbol{A} e \boldsymbol{B} , nós sabemos que,

$$(AB)^{-1} = B^{-1}A^{-1}.$$

Então, nós podemos reescrever \mathbf{Z}_k da seguinte forma

Sejam as matrizes quadradas \boldsymbol{A} e \boldsymbol{B} , nós sabemos que,

$$(AB)^{-1} = B^{-1}A^{-1}.$$

Então, nós podemos reescrever Z_k da seguinte forma

$$Z_k = (\mathbf{X}^{\top} \mathbf{X} + k \mathbf{I}_p)^{-1} \left[(\mathbf{X}^{\top} \mathbf{X})^{-1} \right]^{-1}$$

$$= \left[(\mathbf{X}^{\top} \mathbf{X})^{-1} (\mathbf{X}^{\top} \mathbf{X}) + k (\mathbf{X}^{\top} \mathbf{X})^{-1} \mathbf{I}_p \right]^{-1}$$

$$= \left[\mathbf{I}_p + k (\mathbf{X}^{\top} \mathbf{X})^{-1} \right]^{-1}.$$

Sejam as matrizes quadradas \boldsymbol{A} e \boldsymbol{B} , nós sabemos que,

$$(AB)^{-1} = B^{-1}A^{-1}.$$

Então, nós podemos reescrever Z_k da seguinte forma

$$Z_k = (\boldsymbol{X}^{\top} \boldsymbol{X} + k \boldsymbol{I}_p)^{-1} \left[(\boldsymbol{X}^{\top} \boldsymbol{X})^{-1} \right]^{-1}$$

$$= \left[(\boldsymbol{X}^{\top} \boldsymbol{X})^{-1} (\boldsymbol{X}^{\top} \boldsymbol{X}) + k (\boldsymbol{X}^{\top} \boldsymbol{X})^{-1} \boldsymbol{I}_p \right]^{-1}$$

$$= \left[\boldsymbol{I}_p + k (\boldsymbol{X}^{\top} \boldsymbol{X})^{-1} \right]^{-1}.$$

De (9), nós podemos ver que,

$$\mathbb{E}(\widehat{\beta}_{\mathrm{R}}) = \mathbb{E}(\boldsymbol{Z}_{k}\widehat{\beta}) = \boldsymbol{Z}_{k}\mathbb{E}(\widehat{\beta}) = \boldsymbol{Z}_{k}\beta$$

De (9), nós podemos ver que,

$$\mathbb{E}(\widehat{eta}_{\mathrm{R}}) = \mathbb{E}(oldsymbol{Z}_k \widehat{eta}) = oldsymbol{Z}_k \mathbb{E}(\widehat{eta}) = oldsymbol{Z}_k oldsymbol{eta}$$

Logo, $\widehat{\boldsymbol{\beta}}_{\mathrm{R}}$ é um estimador viesado.

De (9), nós podemos ver que,

$$\mathbb{E}(\widehat{eta}_{\mathrm{R}}) = \mathbb{E}(\mathbf{Z}_{k}\widehat{eta}) = \mathbf{Z}_{k}\mathbb{E}(\widehat{eta}) = \mathbf{Z}_{k}eta$$

Logo, $\widehat{eta}_{\mathrm{R}}$ é um estimador viesado. Lembrando que, o viés é dado por

$$egin{aligned} \mathsf{Vi\acute{e}s}(\widehat{eta}_\mathrm{R}) &= \mathbb{E}(\widehat{eta}_\mathrm{R} - eta) = \mathbb{E}(\widehat{eta}_\mathrm{R}) - eta \ &= \mathbf{Z}_k eta - eta = (\mathbf{Z}_k - \mathbf{I}_p) eta. \end{aligned}$$

De (9), nós podemos ver que,

$$\mathbb{E}(\widehat{eta}_{\mathrm{R}}) = \mathbb{E}(\mathbf{Z}_k \widehat{eta}) = \mathbf{Z}_k \mathbb{E}(\widehat{eta}) = \mathbf{Z}_k eta$$

Logo, $\widehat{eta}_{\mathrm{R}}$ é um estimador viesado. Lembrando que, o viés é dado por

$$egin{aligned} \mathsf{Vi\acute{e}s}(\widehat{eta}_\mathrm{R}) &= \mathbb{E}(\widehat{eta}_\mathrm{R} - eta) = \mathbb{E}(\widehat{eta}_\mathrm{R}) - eta \ &= oldsymbol{Z}_k eta - eta = (oldsymbol{Z}_k - oldsymbol{I}_{
ho})eta. \end{aligned}$$

De (9), nós também temos:

$$\begin{aligned} \operatorname{Var}(\widehat{\beta}_{\mathrm{R}}) &= \operatorname{Var}(\boldsymbol{Z}_{k}\widehat{\boldsymbol{\beta}}) = \boldsymbol{Z}_{k} \operatorname{Var}(\widehat{\boldsymbol{\beta}}) \boldsymbol{Z}_{k}^{\top} = \sigma^{2} \boldsymbol{Z}_{k} (\boldsymbol{X}^{\top} \boldsymbol{X})^{-1} \boldsymbol{Z}_{k}^{\top} \\ &= \sigma^{2} (\boldsymbol{X}^{\top} \boldsymbol{X} + k \boldsymbol{I}_{p})^{-1} (\boldsymbol{X}^{\top} \boldsymbol{X}) (\boldsymbol{X}^{\top} \boldsymbol{X})^{-1} (\boldsymbol{X}^{\top} \boldsymbol{X}) (\boldsymbol{X}^{\top} \boldsymbol{X} + k \boldsymbol{I}_{p})^{-1} \\ &= \sigma^{2} (\boldsymbol{X}^{\top} \boldsymbol{X} + k \boldsymbol{I}_{p})^{-1} (\boldsymbol{X}^{\top} \boldsymbol{X}) (\boldsymbol{X}^{\top} \boldsymbol{X} + k \boldsymbol{I}_{p})^{-1}. \end{aligned}$$

De (9), nós também temos:

$$\begin{aligned} \mathsf{Var}(\widehat{\boldsymbol{\beta}}_{\mathrm{R}}) &= \mathsf{Var}(\boldsymbol{Z}_{k}\widehat{\boldsymbol{\beta}}) = \boldsymbol{Z}_{k} \mathsf{Var}(\widehat{\boldsymbol{\beta}}) \boldsymbol{Z}_{k}^{\top} = \sigma^{2} \boldsymbol{Z}_{k} (\boldsymbol{X}^{\top} \boldsymbol{X})^{-1} \boldsymbol{Z}_{k}^{\top} \\ &= \sigma^{2} (\boldsymbol{X}^{\top} \boldsymbol{X} + k \boldsymbol{I}_{p})^{-1} (\boldsymbol{X}^{\top} \boldsymbol{X}) (\boldsymbol{X}^{\top} \boldsymbol{X})^{-1} (\boldsymbol{X}^{\top} \boldsymbol{X}) (\boldsymbol{X}^{\top} \boldsymbol{X} + k \boldsymbol{I}_{p})^{-1} \\ &= \sigma^{2} (\boldsymbol{X}^{\top} \boldsymbol{X} + k \boldsymbol{I}_{p})^{-1} (\boldsymbol{X}^{\top} \boldsymbol{X}) (\boldsymbol{X}^{\top} \boldsymbol{X} + k \boldsymbol{I}_{p})^{-1}. \end{aligned}$$

O erro quadrático médio é dado por:

$$\begin{aligned}
\mathsf{EQM}(\widehat{\beta}_{\mathrm{R}}) &= \mathbb{E}\left[(\widehat{\beta}_{\mathrm{R}} - \beta)^{\top}(\widehat{\beta}_{\mathrm{R}} - \beta)\right] \\
&= \mathsf{tr}\left\{\sigma^{2}(\boldsymbol{X}^{\top}\boldsymbol{X} + k\boldsymbol{I}_{p})^{-1}(\boldsymbol{X}^{\top}\boldsymbol{X})(\boldsymbol{X}^{\top}\boldsymbol{X} + k\boldsymbol{I}_{p})^{-1}\right\} \\
&+ \beta^{\top}(\boldsymbol{Z}_{k} - \boldsymbol{I}_{p})^{\top}(\boldsymbol{Z}_{k} - \boldsymbol{I}_{p})\beta \\
&\stackrel{(?)}{=} \sigma^{2} \sum_{m=1}^{p} \frac{\lambda_{m}}{(\lambda_{m} + k)^{2}} + k^{2}\beta^{\top}(\boldsymbol{X}^{\top}\boldsymbol{X} + k\boldsymbol{I}_{p})^{-2}\beta,
\end{aligned}$$
(10)

O erro quadrático médio é dado por:

$$\begin{aligned}
\mathsf{EQM}(\widehat{\beta}_{\mathrm{R}}) &= \mathbb{E}\left[(\widehat{\beta}_{\mathrm{R}} - \boldsymbol{\beta})^{\top}(\widehat{\beta}_{\mathrm{R}} - \boldsymbol{\beta})\right] \\
&= \mathsf{tr}\left\{\sigma^{2}(\boldsymbol{X}^{\top}\boldsymbol{X} + k\boldsymbol{I}_{p})^{-1}(\boldsymbol{X}^{\top}\boldsymbol{X})(\boldsymbol{X}^{\top}\boldsymbol{X} + k\boldsymbol{I}_{p})^{-1}\right\} \\
&+ \boldsymbol{\beta}^{\top}(\boldsymbol{Z}_{k} - \boldsymbol{I}_{p})^{\top}(\boldsymbol{Z}_{k} - \boldsymbol{I}_{p})\boldsymbol{\beta} \\
&\stackrel{(?)}{=} \sigma^{2} \sum_{m=1}^{p} \frac{\lambda_{m}}{(\lambda_{m} + k)^{2}} + k^{2}\boldsymbol{\beta}^{\top}(\boldsymbol{X}^{\top}\boldsymbol{X} + k\boldsymbol{I}_{p})^{-2}\boldsymbol{\beta},
\end{aligned}$$
(10)

em que $\lambda_1, \lambda_2, \dots, \lambda_p$ são os autovalores de $\mathbf{X}^{\top} \mathbf{X}$.

O erro quadrático médio é dado por:

$$\begin{aligned}
\mathsf{EQM}(\widehat{\beta}_{\mathrm{R}}) &= \mathbb{E}\left[(\widehat{\beta}_{\mathrm{R}} - \boldsymbol{\beta})^{\top}(\widehat{\beta}_{\mathrm{R}} - \boldsymbol{\beta})\right] \\
&= \mathsf{tr}\left\{\sigma^{2}(\boldsymbol{X}^{\top}\boldsymbol{X} + k\boldsymbol{I}_{p})^{-1}(\boldsymbol{X}^{\top}\boldsymbol{X})(\boldsymbol{X}^{\top}\boldsymbol{X} + k\boldsymbol{I}_{p})^{-1}\right\} \\
&+ \boldsymbol{\beta}^{\top}(\boldsymbol{Z}_{k} - \boldsymbol{I}_{p})^{\top}(\boldsymbol{Z}_{k} - \boldsymbol{I}_{p})\boldsymbol{\beta} \\
&\stackrel{(?)}{=} \sigma^{2} \sum_{m=1}^{p} \frac{\lambda_{m}}{(\lambda_{m} + k)^{2}} + k^{2}\boldsymbol{\beta}^{\top}(\boldsymbol{X}^{\top}\boldsymbol{X} + k\boldsymbol{I}_{p})^{-2}\boldsymbol{\beta},
\end{aligned}$$
(10)

em que $\lambda_1, \lambda_2, \dots, \lambda_p$ são os autovalores de $\mathbf{X}^{\top} \mathbf{X}$.

O primeiro e o segundo termos do EQM são, respectivamente, a variância e o viés ao quadrado de $\widehat{\beta}_{\rm R}$. Se k>0, notem que, o viés de $\widehat{\beta}_{\rm R}$ aumenta, enquanto a variância diminui.

O primeiro e o segundo termos do EQM são, respectivamente, a variância e o viés ao quadrado de $\widehat{eta}_{\mathrm{R}}$. Se k>0, notem que, o viés de $\widehat{eta}_{\mathrm{R}}$ aumenta, enquanto a variância diminui.

Métodos para selecionar k

Hoerl e Kennard (1970b) sugeriram selecionar o valor de k baseado no **traço** *ridge*, um gráfico com as estimativas de $\widehat{\beta}_{\rm R}$ (no eixo das ordenadas) baseada em k (no eixo das abscissas).

Métodos para selecionar k

Hoerl e Kennard (1970b) sugeriram selecionar o valor de k baseado no **traço** ridge, um gráfico com as estimativas de $\widehat{\beta}_{\rm R}$ (no eixo das ordenadas) baseada em k (no eixo das abscissas).

Enquanto, Hoerl et al. (1975) sugeriram o seguinte método analítico:

$$k = \frac{p\hat{\sigma}^2}{\widehat{\beta}^{\top}\widehat{\beta}}.$$

Métodos para selecionar k

Hoerl e Kennard (1970b) sugeriram selecionar o valor de k baseado no **traço** *ridge*, um gráfico com as estimativas de $\widehat{\beta}_{\rm R}$ (no eixo das ordenadas) baseada em k (no eixo das abscissas).

Enquanto, Hoerl et al. (1975) sugeriram o seguinte método analítico:

$$k = \frac{p\hat{\sigma}^2}{\widehat{\boldsymbol{\beta}}^{\top}\widehat{\boldsymbol{\beta}}}.$$

Métodos para contornar a multicolinearidade

Uma segunda metodologia para contornar a multicolinearidade é a **regressão por componentes principais**, ver, por exemplo, a Seção 9.5.4 de Montgomery et al. (2021).

Roteiro

- 1 Introdução
- 2 Identificando multicolinearidade
- 3 Regressão ridge
- 4 Aplicação
- 5 Referências bibliográficas

(Montgomery et al., 2021, p. 298) Um conjunto de dados, com 16 observações,

(Montgomery et al., 2021, p. 298) Um conjunto de dados, com 16 observações, relacionado a porcentagem de heptano convertido em acetileno (Y),

(Montgomery et al., 2021, p. 298) Um conjunto de dados, com 16 observações, relacionado a porcentagem de heptano convertido em acetileno (Y), com três variáveis explicativas:

(Montgomery et al., 2021, p. 298) Um conjunto de dados, com 16 observações, relacionado a porcentagem de heptano convertido em acetileno (Y), com três variáveis explicativas: temperatura do reator $(x_2, \text{ em oC})$,

(Montgomery et al., 2021, p. 298) Um conjunto de dados, com 16 observações, relacionado a porcentagem de heptano convertido em acetileno (Y), com três variáveis explicativas: temperatura do reator $(x_2, \text{ em oC})$, proporção de H_2 $(x_3, \text{ em mols})$

(Montgomery et al., 2021, p. 298) Um conjunto de dados, com 16 observações, relacionado a porcentagem de heptano convertido em acetileno (Y), com três variáveis explicativas: temperatura do reator $(x_2, \text{ em oC})$, proporção de H_2 $(x_3, \text{ em mols})$ e tempo de contato $(x_4, \text{ em segundos})$.

(Montgomery et al., 2021, p. 298) Um conjunto de dados, com 16 observações, relacionado a porcentagem de heptano convertido em acetileno (Y), com três variáveis explicativas: temperatura do reator $(x_2, \text{ em oC})$, proporção de H_2 $(x_3, \text{ em mols})$ e tempo de contato $(x_4, \text{ em segundos})$.

Na Figura 1, nós apresentamos o gráfico de dispersão entre as covariáveis x_2 e x_4 .

(Montgomery et al., 2021, p. 298) Um conjunto de dados, com 16 observações, relacionado a porcentagem de heptano convertido em acetileno (Y), com três variáveis explicativas: temperatura do reator $(x_2, \text{ em oC})$, proporção de H_2 $(x_3, \text{ em mols})$ e tempo de contato $(x_4, \text{ em segundos})$.

Na Figura 1, nós apresentamos o gráfico de dispersão entre as covariáveis x_2 e x_4 .

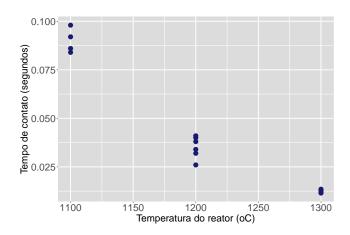


Figura 1: Gráfico de dispersão.

Como as covariáveis estão em escalas muito diferentes, foi feita uma transformação para deixá-las em escala normal de unidade. Em seguida, foi definido o seguinte modelo a ser ajustado:

Como as covariáveis estão em escalas muito diferentes, foi feita uma transformação para deixá-las em escala normal de unidade. Em seguida, foi definido o seguinte modelo a ser ajustado:

$$Y_{\ell} = \beta_1 + \beta_2 x_{\ell 2} + \beta_3 x_{\ell 3} + \beta_4 x_{\ell 4}$$
$$+ \beta_5 x_{\ell 2} x_{\ell 3} + \beta_6 x_{\ell 2} x_{\ell 4} + \beta_7 x_{\ell 3} x_{\ell 4}$$
$$+ \beta_8 x_{\ell 2}^2 + \beta_9 x_{\ell 3}^2 + \beta_{10} x_{\ell 4}^2 + \varepsilon_{\ell},$$

$$\ell = 1, 2, \dots, 16.$$

Como as covariáveis estão em escalas muito diferentes, foi feita uma transformação para deixá-las em escala normal de unidade. Em seguida, foi definido o seguinte modelo a ser ajustado:

$$Y_{\ell} = \beta_1 + \beta_2 x_{\ell 2} + \beta_3 x_{\ell 3} + \beta_4 x_{\ell 4}$$
$$+ \beta_5 x_{\ell 2} x_{\ell 3} + \beta_6 x_{\ell 2} x_{\ell 4} + \beta_7 x_{\ell 3} x_{\ell 4}$$
$$+ \beta_8 x_{\ell 2}^2 + \beta_9 x_{\ell 3}^2 + \beta_{10} x_{\ell 4}^2 + \varepsilon_{\ell},$$

$$\ell = 1, 2, \dots, 16.$$

Pela Figura 1, há um forte indício de uma relação entre as variáveis x_2 e

 x_4 . Para aplicação das técnicas aprendidas, nós iremos transformar o banco de dados para a escala de tamanho unitário.

Pela Figura 1, há um forte indício de uma relação entre as variáveis x_2 e x_4 . Para aplicação das técnicas aprendidas, nós iremos transformar o banco de dados para a escala de tamanho unitário. Em seguida, nós definimos o seguinte modelo a ser ajustado:

$$Y_{\ell}^{*} = \beta_{2}^{*} x_{\ell 2}^{*} + \beta_{3}^{*} x_{\ell 3}^{*} + \beta_{4}^{*} x_{\ell 4}^{*}$$

$$+ \beta_{5}^{*} x_{\ell 2}^{*} x_{\ell 3}^{*} + \beta_{6}^{*} x_{\ell 2}^{*} x_{\ell 4}^{*} + \beta_{7}^{*} x_{\ell 3}^{*} x_{\ell 4}^{*}$$

$$+ \beta_{8}^{*} x_{\ell 2}^{2*} + \beta_{9}^{*} x_{\ell 3}^{2*} + \beta_{10}^{*} x_{\ell 4}^{2*} + \varepsilon_{\ell},$$

Pela Figura 1, há um forte indício de uma relação entre as variáveis x_2 e x_4 . Para aplicação das técnicas aprendidas, nós iremos transformar o banco de dados para a escala de tamanho unitário. Em seguida, nós definimos o seguinte modelo a ser ajustado:

$$Y_{\ell}^{*} = \beta_{2}^{*} x_{\ell 2}^{*} + \beta_{3}^{*} x_{\ell 3}^{*} + \beta_{4}^{*} x_{\ell 4}^{*}$$

$$+ \beta_{5}^{*} x_{\ell 2}^{*} x_{\ell 3}^{*} + \beta_{6} x_{\ell 2}^{*} x_{\ell 4}^{*} + \beta_{7}^{*} x_{\ell 3}^{*} x_{\ell 4}^{*}$$

$$+ \beta_{8}^{*} x_{\ell 2}^{2*} + \beta_{9}^{*} x_{\ell 3}^{2*} + \beta_{10}^{*} x_{\ell 4}^{2*} + \varepsilon_{\ell},$$

 $\ell = 1, 2, \dots, 16.$

Tabela 1: Estimativas do parâmetros.

Parâmetro	Estimativa	EP	t _c
eta_2^*	0,336	0,351	0,959
eta_3^*	0,233	0,024	9,773
$eta_{f 4}^*$	-0,676	0,472	-1,431
eta_5^*	-0,480	0,101	-4,757
eta_6^*	-2,034	1,467	-1,386
eta_7^*	-0,266	0,108	-2,459
eta_8^*	-0,835	0,760	-1,098
eta_{9}^{*}	-0,090	0,032	-2,805
eta_{10}^*	-1,001	0,616	-1,625

Região crítica, para $\alpha=5\%$: $|t_c|>2,365$, com QMRes = 0,00033.

Tabela 2: Matriz de correlações.

1,00	0,22	-0,96	-0,13	0,44	0,21	-0,27	0,03	-0,58
0,22	1,00	-0,24	0,04	0,19	-0,02	-0,15	0,50	-0,22
-0,96	-0,24	1,00	0,19	-0,66	-0,27	0,50	-0,02	0,77
-0,13	0,04	0,19	1,00	-0,26	-0,97	0,25	0,40	0,27
0,44	0,19	-0,66	-0,26	1,00	0,32	-0,97	0,13	-0,97
0,21	-0,02	-0,27	-0,97	0,32	1,00	-0,28	-0,37	-0,36
-0,27	-0,15	0,50	0,25	-0,97	-0,28	1,00	-0,12	0,89
0,03	0,50	-0,02	0,40	0,13	-0,37	-0,12	1,00	-0,16
-0,58	-0,22	0,77	0,27	-0,97	-0,36	0,89	-0,16	1,00

Tabela 3: Medidas de multicolinearidade.

	<i>x</i> ₂	<i>x</i> ₃	<i>X</i> 4	<i>x</i> ₂ <i>x</i> ₃	<i>x</i> ₂ <i>x</i> ₄	<i>X</i> 3 <i>X</i> 4	x_{2}^{2}	x_3^2	x ₄ ²
VIF	375,25	1,74	680,28	31,04	6563,35	35,61	1762,58	3,16	1156,77
AV	4,21	2,16	1,14	1,04	0,39	0,05	0,01	0,01	0,00
κ	1,00	1,95	3,69	4,04	10,92	84,89	308,63	820,08	43381,31

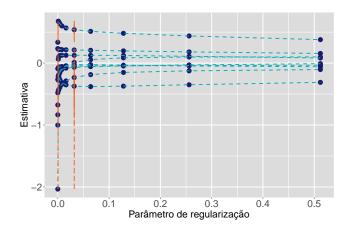


Figura 2: Traço ridge.

Tabela 4: Estimativas dos coeficientes.

	EMQ	Ridge
	(0,000)	(0,032)
β_2	0,336	0,539
β_3	0,233	0,212
β_4	-0,676	-0,374
β_5	-0,480	-0,233
β_6	-2,034	-0,068
β_7	-0,266	0,012
β_8	-0,835	0,125
eta_9	-0,090	-0,048
β_{10}	-1,001	-0,027

Roteiro

- 1 Introdução
- 2 Identificando multicolinearidade
- 3 Regressão ridge
- 4 Aplicação
- 5 Referências bibliográficas

Referências bibliográficas I

- Gauss, C. F. (1821), 'Theoria combinationis observationum erroribus minimis obnoxiae part 1', *Werke* **4**, 1–108.
- Gosset "Student", W. S. (1908), 'The probable error of a mean', Biometrika $\mathbf{6}(1)$, 1–25.
- Hoerl, A. E. e Kennard, R. W. (1970*a*), 'Ridge regression: Applications to nonorthogonal problems', *Technometrics* **12**(1), 69–82.
- Hoerl, A. E. e Kennard, R. W. (1970*b*), 'Ridge regression: biased estimation for nonorthogonal problems', *Technometrics* **12**(1), 55-67

Referências bibliográficas II

Hoerl, A. E., Kennard, R. W. e Baldwin, K. F. (1975), 'Ridge regression: some simulations', *Communications in Statistics - Theory and Methods* **4**(2), 105–123.

Montgomery, D. C., Peck, E. A. e Vining, G. G. (2021), *Introduction to linear regression analysis*, 6th edn, Wiley, New York.

Obrigado!

 \bowtie tiago.magalhaes@ufjf.br

mufjf.br/tiago_magalhaes

Departamento de Estatística, Sala 319

