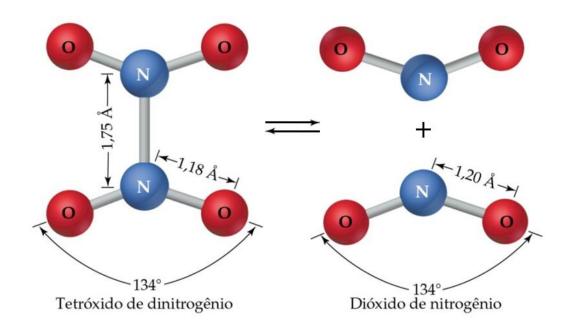

Equilíbrio químico

Considere o N₂O₄ puro, incolor. À temperatura ambiente, ele se decompõe em NO₂ marrom:

$$N_2O_4(g) \rightarrow 2NO_2(g)$$

• Em um determinado momento, a cor para de se alterar e temos a mistura de N_2O_4 e NO_2 .



- Equilíbrio químico é o ponto em que as concentrações de todas as espécies são constantes.
- Utilizando o modelo de colisão:
 - À medida que a quantidade de NO₂ aumenta:

$$N_2O_4(g) \rightarrow 2NO_2(g)$$

há uma chance de duas moléculas de NO₂ se colidirem para formar NO₂:

$$2NO_2(g) \rightarrow N_2O_4(g)$$

O ponto no qual a velocidade de decomposição:

$$N_2O_4(g) \rightarrow 2NO_2(g)$$

se iguala à velocidade de dimerização:

$$2NO_2(g) \rightarrow N_2O_4(g)$$

é o equilíbrio dinâmico. Escrevemos:

$$N_2O_4(g) \rightleftharpoons 2NO_2(g)$$

O equilíbrio é dinâmico porque a reação não parou: as velocidades opostas são iguais.

• No equilíbrio, tanto N_2O_4 reage para formar NO_2 quanto NO_2 reage para formar outra vez N_2O_4 :

$$N_2O_4(g) \rightarrow 2NO_2(g)$$

 $2NO_2(g) \rightarrow N_2O_4(g)$.

$$N_2O_4(g) \implies 2NO_2(g)$$

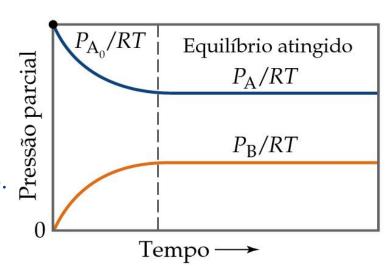
- A seta dupla significa que o processo é dinâmico.
- Considere

Reação direta: A \rightarrow B Velocidade = k_d [A]

Reação inversa: B \rightarrow A Velocidade = k_i [B]

No equilíbrio $k_d[A] = k_i[B]$.

• Para um equilíbrio escrevemos

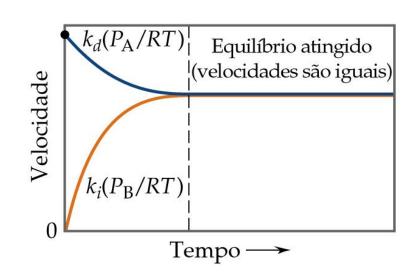

 $A \Longrightarrow B$

À medida que a reação progride:

[A] diminui para uma constante,

[B] aumenta de zero para uma constante.

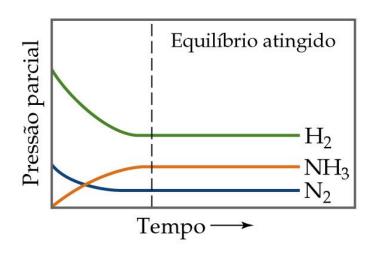
Quando [A] e [B] são constantes, o equilíbrio é alcançado.

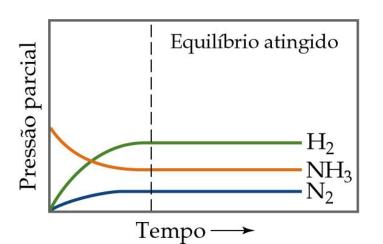


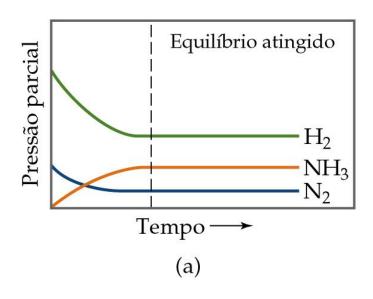
Alternativamente:

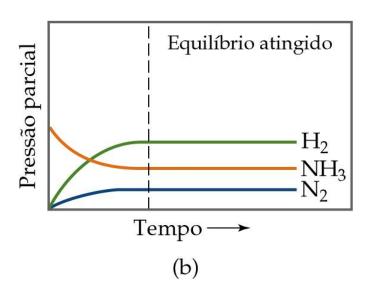
 $k_d[A]$ diminui para uma constante,

 $k_i[B]$ aumenta de zero para uma constante.


Quando $k_d[A] = k_i[B]$, o equilíbrio é alcançado.


• Considere o processo de Haber:


$$N_2(g) + 3H_2(g) \longrightarrow 2NH_3(g)$$


 Se começarmos com uma mistura de nitrogênio e hidrogênio (em quaisquer proporções), a reação alcançará o equilíbrio com uma concentração constante de nitrogênio, hidrogênio e amônia.

 No entanto, se começarmos apenas com amônia e nenhum nitrogênio ou hidrogênio, a reação prosseguirá e N₂ e H₂ serão produzidos até que o equilíbrio seja alcançado.

- Não importa a composição inicial de reagentes e produtos, <u>a mesma proporção de concentrações é alcançada no equilíbrio</u>.
- A relação entre as concentrações de produtos e reagentes, no equilíbrio, é uma constante: a **CONSTANTE DE EQUILÍBRIO**.

Para uma reação geral na fase gasosa

$$aA + bB \implies cC + dD$$

a expressão da constante de equilíbrio na fase gasosa é

$$K_{eq} = \frac{P_{\mathbf{C}}^{c} P_{\mathbf{D}}^{d}}{P_{\mathbf{A}}^{a} P_{\mathbf{B}}^{b}}$$

onde K_{eq} é a constante de equilíbrio.

Para uma reação geral em solução

$$aA + bB \implies cC + dD$$

a expressão da constante de equilíbrio em solução é

$$K_{eq} = \frac{[\mathbf{C}]^c [\mathbf{D}]^d}{[\mathbf{A}]^a [\mathbf{B}]^b}$$

onde K_{eq} é a constante de equilíbrio.

Para o processo Haber de produção da amônia

$$N_2(g) + 3H_2(g) \longrightarrow 2NH_3(g)$$

a expressão da constante de equilíbrio é

$$K_{eq} = \frac{P_{\rm NH_3}^2}{P_{\rm N_2} P_{\rm H_2}^3}$$

onde K_{eq} é a constante de equilíbrio.

O mesmo equilíbrio é estabelecido não importando como a reação começou.

$$N_2O_4(g) \longrightarrow 2NO_2(g)$$

$$K_{eq} = \frac{P_{\text{NO}_2}^2}{P_{\text{N}_2\text{O}_4}}$$

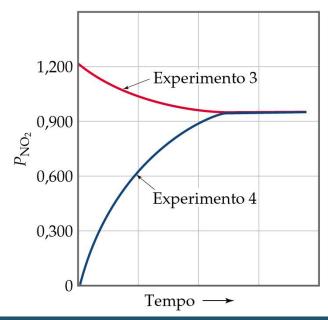


TABELA 15.1 Pressões parciais iniciais e no equilíbrio (P) de N₂O₄ e NO₂ a 100 °C

Experimento	Pressão parcial inicial de N_2O_4 (atm)	Pressão parcial inicial de NO ₂ (atm)	Pressão parcial de N_2O_4 no equilíbrio (atm)	Pressão parcial de NO ₂ no equilíbrio (atm)	K_{eq}
1	0,0	0,612	0,0429	0,526	6,45
2	0,0	0,919	0,0857	0,744	6,46
3	0,0	1,22	0,138	0,944	6,46
4	0,612	0,0	0,138	0,944	6,46

Ordem de grandeza das constantes de equilíbrio

• A constante de equilíbrio, K, é a razão entre produtos e reagentes.

$$aA + bB \implies cC + dD$$

$$K_{eq} = \frac{[\mathbf{C}]^c [\mathbf{D}]^d}{[\mathbf{A}]^a [\mathbf{B}]^b}$$

- Consequentemente, quanto maior for *K*, mais produtos estarão presentes no equilíbrio.
- De modo inverso, quanto menor for *K*, mais reagentes estarão presentes no equilíbrio.
- Se K >> 1, então os produtos predominam no equilíbrio e o equilíbrio encontra-se à direita; e vice-versa.

COMO FAZER 15.2

A reação de N₂ com O₂ para formar NO poderia ser considerada uma maneira de 'fixar' nitrogênio.

$$N_2(g) + O_2(g) \longrightarrow 2NO(g)$$

O valor para a constante de equilíbrio para essa reação a 25 °C é $K_{eq} = 1 \times 10^{-30}$. Descreva a praticabilidade dessa reação para a fixação de nitrogênio.

Solução

Análise: pede-se comentar sobre a utilidade de uma reação com base na ordem de grandeza de sua constante de equilíbrio.

Planejamento: consideraremos a ordem de grandeza da constante de equilíbrio para determinar se essa reação é prática ou não para a produção das espécies desejadas.

Resolução: como K_{eq} é muito pequeno, muito pouco NO será formado a 25 °C. O equilíbrio encontra-se à esquerda, favorecendo os reagentes. Consequentemente, essa reação é uma escolha extremamente ruim para a fixação de nitrogênio, pelo menos a 25 °C.

PRATIQUE

A constante de equilíbrio para a reação $H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$ varia com a temperatura como segue: $K_{eq} = 794$ a 298 K; $K_{eq} = 54$ a 700 K. A formação de HI é mais favorecida a temperatura mais alta ou mais baixa?

Resposta: ela é favorecida a temperatura mais baixa porque K_{eq} é maior.

O sentido da equação química e K_{eq}

Em 100 °C:

$$N_2O_4(g) \rightleftharpoons 2NO_2(g)$$

$$K_{eq} = \frac{P_{\text{NO}_2}^2}{P_{\text{N}_2\text{O}_4}} = 6.46$$

$$2NO_2(g) \longrightarrow N_2O_4(g)$$

$$K_{eq} = \frac{P_{\text{N}_2\text{O}_4}}{P_{\text{NO}_2}^2} = 0.155 = \frac{1}{6.46}$$

A expressão da constante de equilíbrio para uma reação escrita em um sentido é a recíproca da escrita no sentido inverso

COMO FAZER 15.3

(a) Escreva a expressão para K_{ea} para a seguinte reação:

$$2NO(g) \longrightarrow N_2(g) + O_2(g)$$

(b) Usando a informação de "Como fazer 15.2", determine o valor dessa constante de equilíbrio a 25 °C.

Solução

Análise: pede-se escrever uma expressão para a constante de equilíbrio e determinar o valor da constante de equilíbrio para o equilíbrio gasoso.

Planejamento: como antes, escrevemos a constante de equilíbrio como um quociente de produtos sobre reagentes, cada um elevado à potência que é igual ao seu coeficiente na equação balanceada. Podemos determinar o valor da constante de equilíbrio relacionando a expressão da constante de equilíbrio que escrevemos para essa reação com a expressão da constante de equilíbrio de "Como fazer 15.2".

Resolução: (a) Escrevendo os produtos sobre os reagentes, temos:

$$K_{eq} = \frac{P_{\rm N_2} P_{\rm O_2}}{(P_{\rm NO})^2}$$

(b) A reação é exatamente o inverso da apresentada em "Como fazer 15.2". Portanto, tanto a expressão da constante de equilíbrio quanto o valor numérico da constante de equilíbrio são recíprocos aos de "Como fazer 15.2".

$$K_{eq} = \frac{P_{N_2} P_{O_2}}{(P_{NO})^2} = \frac{1}{1 \times 10^{-30}} = 1 \times 10^{30}$$

Independentemente da maneira como expressamos a constante de equilíbrio entre NO, N2 e O2, a 25 °C ele apresenta-se do lado que favorece N_2 e O_2 .

PRATIQUE

Para a formação de NH₃ a partir de N₂ e H₂, N₂(g) + 3H₂(g) \Longrightarrow 2NH₃(g), $K_{eq} = 4.34 \times 10^{-3}$ a 300 °C. Qual é o valor de K_{eq} para a reação inversa?

Resposta: $2,30 \times 10^2$

Outras maneiras de manipular as equações químicas e os valores de K_{eq}

A reação

$$N_2O_4(g) \implies 2NO_2(g)$$

Tem, a 100 °C

$$K_{eq} = \frac{P_{\text{NO}_2}^2}{P_{\text{N}_2\text{O}_4}} = 6.46$$

Se multiplicarmos essa reação por 2: $2N_2O_4(g) \implies 4NO_2(g)$

$$K_{eq} = \frac{P_{\text{NO}_2}^4}{P_{\text{N}_2\text{O}_4}^2} = 41,17 = 6,46^2$$

Outras maneiras de manipular as equações químicas e os valores de K_{eq}

• Se uma reação química pode ser considerada como uma soma de várias etapas, a multiplicação das constantes de equilíbrio para cada etapa é igual à constante de equilíbrio da reação global.

Reação global: $2NOBr(g) + Cl_2(g) \leftrightarrow 2NO(g) + 2BrCl(g)$

Etapa 1: $2NOBr(g) \leftrightarrow 2NO(g) + Br_2(g)$

Etapa 2: $Br_2(g) + Cl_2(g) \leftrightarrow 2BrCl(g)$

Outras maneiras de manipular as equações químicas e os valores de K_{eq}

$$2NOBr(g) \leftrightarrow 2NO(g) + Br_2(g)$$

$$Br_2(g) + Cl_2(g) \leftrightarrow 2BrCl(g)$$

$$K_{eq} = \frac{P_{NO}^2 P_{Br_2}}{P_{NOBr}^2} = 0,42$$

$$K_{eq} = \frac{P_{BrCl}^2}{P_{Br_2}P_{Cl_2}} = 7,2$$

Outras maneiras de manipular as equações químicas e os valores de K_{eq}

$$2NOBr(g) \leftrightarrow 2NO(g) + Br_2(g)$$
 $K_{eq} = \frac{P_{NO}^2 P_{Br_2}}{P_{NOBr}^2} = 0,42$

$$Br_2(g) + Cl_2(g) \leftrightarrow 2BrCl(g)$$

$$K_{eq} = \frac{P_{NO}^2 P_{Br_2}}{P_{NOBr}^2} = 0,42$$

$$K_{eq} = \frac{P_{BrCl}^2}{P_{Br_2}P_{Cl_2}} = 7,2$$

Outras maneiras de manipular as equações químicas e os valores de K_{eq}

$$2NOBr(g) \leftrightarrow 2NO(g) + Br_2(g)$$
 $K_{eq} = \frac{P_{NO}^2 P_{Br_2}}{P_{NOBr}^2} = 0,42$

$$Br_2(g) + Cl_2(g) \leftrightarrow 2BrCl(g)$$

$$K_{eq} = \frac{P_{NO}^2 P_{Br_2}}{P_{NOBr}^2} = 0,42$$

$$K_{eq} = \frac{P_{BrCl}^2}{P_{Br_2}P_{Cl_2}} = 7,2$$

$$2NOBr(g) + Cl_2(g) \leftrightarrow 2NO(g) + 2BrCl(g)$$

Outras maneiras de manipular as equações químicas e os valores de K_{eq}

$$2NOBr(g) \leftrightarrow 2NO(g) + Br_2(g)$$
 $K_{eq} = \frac{P_{NO}^2 P_{Br_2}}{P_{NOBr}^2} = 0,42$

$$Br_2(g) + Cl_2(g) \leftrightarrow 2BrCl(g)$$

$$K_{eq} = \frac{P_{NO}^2 P_{Br_2}}{P_{NOBr}^2} = 0.42$$

$$K_{eq} = \frac{P_{BrCl}^2}{P_{Br_2}P_{Cl_2}} = 7,2$$

$$2NOBr(g) + Cl_2(g) \leftrightarrow 2NO(g) + 2BrCl(g)$$

$$K_{eq} = \frac{P_{\text{NO}}^2 P_{BrCl}^2}{P_{\text{NOBr}}^2 P_{Cl_2}} = 3,3 = 0,42 \times 7,2$$

Equilíbrios heterogêneos

$$CaCO_3(s) \longrightarrow CaO(s) + CO_2(g)$$

- A concentração de um sólido ou um líquido puro é sua densidade dividida pela massa molar.
- Nem a densidade nem a massa molar é uma variável, as concentrações de sólidos e líquidos puros são constantes.
- Ignoramos as concentrações de líquidos puros e sólidos puros nas expressões das constantes de equilíbrio.
- A quantidade de CO₂ formada não dependerá das quantidades relativas de CaO e CaCO₃ presentes.

$$K_{eq} = P_{CO_2}$$

Equilíbrios heterogêneos

COMO FAZER 15.5

Escreva as expressões da constante de equilíbrio para cada uma das seguintes reações:

(a)
$$CO_2(g) + H_2(g) \Longrightarrow CO(g) + H_2O(l)$$

(b)
$$SnO_2(s) + 2CO(g) \Longrightarrow Sn(s) + 2CO_2(g)$$

(c)
$$Sn(s) + 2H^{+}(aq) \Longrightarrow Sn^{2+}(aq) + H_{2}(g)$$

Solução

Análise: dadas três equações químicas, todas para equilíbrios heterogêneos, pede-se escrever as expressões da constante de equilíbrio correspondente.

Planejamento: empregamos a lei da ação de massa, lembrando de omitir quaisquer sólidos puros, líquidos puros e solventes das expressões.

Resolução: (a) A expressão da constante de equilíbrio é:

$$K_{eq} = \frac{P_{\text{CO}}}{P_{\text{CO}_2} P_{\text{H}_2}}$$

Uma vez que a água aparece na reação como um líquido puro, sua concentração não aparece na expressão da constante de equilíbrio.

(b) A expressão da constante de equilíbrio é:

$$K_{eq} = \frac{(P_{CO_2})^2}{(P_{CO})^2}$$

Como SnO₂ e Sn são ambos sólidos puros, suas concentrações não aparecem na expressão da constante de equilíbrio.

(c) A expressão para a constante de equilíbrio é:

$$K_{eq} = \frac{[Sn^{2+}]P_{H_2}}{[H^+]^2}$$

Como Sn é um sólido puro, sua concentração não aparece na expressão da constante de equilíbrio. Observe que tanto as concentrações em quantidade de matéria quanto as pressões parciais aparecem na mesma expressão.

Cálculo das constantes de equilíbrio

Quando a concentração de todas as espécies é conhecida

COMO FAZER 15.7

Uma mistura de hidrogênio e nitrogênio em um recipiente de reação atinge o equilíbrio a 472 °C. A mistura de gases em equilíbrio foi analisada e descobriu-se que ela contém 7,38 atm de H_2 , 2,46 atm de H_2 e 0,166 atm de H_3 . A partir desses dados calcule a constante de equilíbrio, H_2 0 para:

$$N_2(g) + 3H_2(g) \Longrightarrow 2NH_3(g)$$

Solução

Análise: dadas uma equação balanceada e as pressões parciais no equilíbrio, pede-se calcular o valor da constante de equilíbrio.

Planejamento: usando a equação balanceada, escrevemos a expressão da constante de equilíbrio. A seguir substituímos as pressões parciais na expressão e achamos o valor de K_{eq} .

Resolução:

$$K_{eq} = \frac{(P_{\text{NH}_3})^2}{P_{\text{N}_2}(P_{\text{H}_2})^3} = \frac{(0.166)^2}{(2.46)(7.38)^3} = 2.79 \times 10^{-5}$$

PRATIQUE

Encontra-se que uma solução aquosa de ácido acético tem as seguintes concentrações no equilíbrio a 25 °C: $[HC_2H_3O_2] = 1,65 \times 10^{-2} \text{ mol/L}; [H^+] = 5,44 \times 10^{-4} \text{ mol/L}$ e $[C_2H_3O_2] = 5,44 \times 10^{-4} \text{ mol/L}$. Calcule a constante de equilíbrio, K_{eq} para a ionização do ácido acético a 25 °C. (Seção 4.3)

Resposta: $1,79 \times 10^{-5}$

Cálculo das constantes de equilíbrio

Quando se conhece a concentração de apenas um dos componentes no equilíbrio

- Proceda do seguinte modo:
 - Coloque em uma tabela as concentrações (ou pressões) iniciais e no equilíbrio fornecidas.
 - Se a concentração (ou pressão) inicial e no equilíbrio é fornecida para uma espécie, calcule a variação na concentração (ou pressão).
 - Use a estequiometria para calcular as variações nas concentrações (ou pressões) de todas as espécies e deduza as concentrações (ou pressões) no equilíbrio de todas as espécies.
 - Use as concentrações (ou pressões) no equilíbrio para calcular a constante de equilíbrio.

PRATIQUE

O trióxido de enxofre decompõe-se a alta temperatura em um recipiente selado: $2SO_3(g) \rightleftharpoons 2SO_2(g) + O_2(g)$. Inicialmente o recipiente é abastecido a $1.000~\rm K$ com $SO_3(g)$ a uma pressão parcial de $0,500~\rm atm$. No equilíbrio a pressão parcial de SO_3 é SO_3 00 atm. Calcule o valor de SO_3 100 K.

Resposta: 0,338