

3ª Lista de Exercícios QUI125 – Química Fundamental

- Suponha que as reações na fase gasosa A → B e B → A sejam processos elementares com constantes de velocidades de 4,2x10-3 s-1 e 1,5x10-1 s-1, respectivamente. (a) Qual é o valor da constante de equilíbrio para o equilíbrio A_(g) ⇌ B_(g)? (b) Qual é maior no equilíbrio, a pressão parcial de A ou a pressão parcial de B? Justifique sua resposta.
- 2. Escreva a expressão para K_{eq} para as seguintes equações. Em cada caso indique se a reação é homogênea ou heterogênea:
 - (a) $3NO_{(g)} \rightleftharpoons N_2O_{(g)} + NO_{2(g)}$
 - (b) $CH_{4(g)} + H_2S_{(g)} \rightleftharpoons CS_{2(g)} + 4H_{2(g)}$
 - (c) $Ni(CO)_{4(g)} \rightleftharpoons Ni_{(s)} + 4CO_{(g)}$
 - (d) $HF_{(aq)} \rightleftharpoons H^{+}_{(aq)} + F^{-}_{(aq)}$
 - (e) $2Ag(s) + Zn^{2+}(aq) \rightleftharpoons 2Ag^{+}(aq) + Zn(s)$
- 3. Quando as seguintes reações chegam ao equilíbrio, a mistura em equilíbrio contêm mais reagentes ou mais produtos?
 - (a) $N_{2(g)} + O_{2(g)} \rightleftharpoons 2NO_{(g)}$; $K_{eq} = 1.5 \times 10^{-10}$
 - (b) $2SO_{2(g)} + O_{2(g)} \rightleftharpoons 2SO_{3(g)}$; $K_{eq} = 2.5 \times 10^9$
- 4. A constante de equilíbrio para a reação

$$2SO_{3(g)} \rightleftharpoons 2SO_{2(g)} + O_{2(g)}$$

é K_{eq} = 2,4x10⁻³ a 200 °C. (a) Calcule K_{eq} para a reação 2SO_{2(g)} + O_{2(g)} \rightleftharpoons 2SO_{3(g)}. (b) Calcule K_{eq} para a reação SO_{3(g)} \rightleftharpoons SO_{2(g)} + ½ O_{2(g)}

- 5. O iodeto de hidrogênio gasoso é colocado em um recipiente fechado a 425 °C, onde se decompõe parcialmente em gases hidrogênio e iodo: $2HI_{(g)} \rightleftharpoons H_{2(g)} + I_{2(g)}$. No equilíbrio, encontra-se que $P_{HI} = 0,202$ atm, $P_{H_2} = 0,0274$ atm e $P_{I_2} = 0,0274$ atm. Qual é o valor de K_{eq} a essa temperatura?
- 6. O óxido nítrico (NO) reage rapidamente com o gás cloro como segue:

$$2NO_{(g)} + Cl_{2(g)} \rightleftharpoons 2NOCl_{(g)}$$

A 700 K a constante de equilíbrio para essa reação é 0,26. Determine o comportamento das seguintes misturas a essa temperatura: (a) P_{NO} = 0,15 atm; P_{Cl2} = 0,31 atm e P_{NOCl} = 0,11 atm; (b) P_{NO} = 0,12 atm; P_{Cl2} = 0,10 atm e P_{NOCl} = 0,05 atm; (c) P_{NO} = 0,15 atm; P_{Cl2} = 0,20 atm e P_{NOCl} = 5,1x10-3 atm.

7. Uma mistura de 0,10 mol de NO, 0,05 mol de H₂ e 0,10 mol de H₂O é colocada em um recipiente de 1,0 L a 300K. O seguinte equilíbrio é estabelecido:

$$2NO_{(g)} + 2H_{2(g)} \rightleftharpoons N_{2(g)} + 2H_2O_{(g)}$$

No equilíbrio, P_{NO} = 1,53 atm. (a) Calcule as pressões parciais de H₂, N₂ e H₂O_. (b) Calcule K_{eq}.

Departamento de Química

Universidade Federal de Juiz de Fora - Departamento de Química

- 8. Para a reação I_{2(g)} + Br_{2(g)} ⇌ 2IBr_(g), K_{eq} = 280 a 150 °C. Suponha que 0,500 mol de IBr em um frasco de 1,00 L atinja o equilíbrio a 150 °C. Quais são as pressões parciais de IBr, I₂ e Br₂ no equilíbrio?
- 9. Quando 2,00 mol de SO₂Cl₂ é colocado em um frasco de 2,00 L a 303 K, 56% de SO₂Cl₂ decompõese em SO₂ e Cl₂:

$$SO_2Cl_{2(q)} \rightleftharpoons SO_{2(q)} e Cl_{2(q)}$$

Calcule K_{eq} para essa reação a essa temperatura.

10. Considere o seguinte equilíbrio para o qual $\Delta H < 0$:

$$2SO_{2(g)} + O_{2(g)} \rightleftharpoons 2SO_{3(g)}$$

Como cada uma das seguintes variações afetará a mistura em equilíbrio dos três gases? (a) $O_{2(g)}$ é adicionado ao sistema; (b) a mistura da reação é aquecida; (c) o volume do recipiente de reação é dobrado; (d) a pressão total do sistema é aumentada adicionando-se um gás nobre; (e) $SO_{3(g)}$ é removido do sistema.

11. Considere o seguinte equilíbrio entre os óxidos de nitrogênio:

$$NO_{2(g)} + N_2O_{(g)} \rightleftharpoons 3NO_{(g)} \quad \Delta H > 0$$

- (a) A constante de equilíbrio aumentará ou diminuirá com o aumento da temperatura? Justifique sua resposta. (b) A temperatura constante, como uma variação no volume do recipiente afetaria a fração de produtos na mistura em equilíbrio?
- 12. Determine os produtos das seguintes reações ácido-base, indique os pares ácido/base conjugados e determine se o equilíbrio está deslocado à esquerda ou à direita da reação (consulte tabelas de forças relativas de ácidos e bases):

$$\begin{aligned} & \text{HCO}_3^- + \text{F}^- \rightleftharpoons \\ & \text{O}^{2-} + \text{H}_2\text{O} \rightleftharpoons \\ & \text{CH}_3\text{COOH} + \text{HS}^- \rightleftharpoons \\ & \text{Cl}^- + \text{H}_3\text{O}^+ \rightleftharpoons \\ & \text{HNO}_2 + \text{H}_2\text{O} \rightleftharpoons \\ & \text{NO}_3^- + \text{H}_2\text{O} \rightleftharpoons \end{aligned}$$

- 13. (a) Escreva equações químicas balanceadas que mostrem que o íon ${
 m H_2PO_4^-}$ é anfótero em meio aquoso.
 - (b) Indique os pares ácido/base conjugados nas equações do item (a).
- 14. (a) Por que normalmente não falamos de valores de Ka para ácidos fortes, como HCℓ e HNO₃?
 - (b) Por que é necessário especificar a temperatura ao fornecer valores de Ka?
- 15. Uma amostra de vinagre tem um pH de 2,90. Supondo que o ácido acético (K_a = 1,8×10⁻⁵) seja o único ácido presente, calcule a concentração de ácido acético no vinagre.
- 16. Uma solução de ácido fenilacético (HC₈H₇O₂) de concentração 0,085 mol/L tem pH igual a 2,68. Calcule o valor de K_a para este ácido.

Departamento de Química

Universidade Federal de Juiz de Fora - Departamento de Química

- 17. A constante de dissociação ácida para o ácido hipocloroso (HClO) é 3,0×10-8. Calcule as concentrações de H+, ClO- e HClO no equilíbrio quando a concentração inicial de HClO for de 0,0075 mol/L.
- 18. A porcentagem de protonação da metilamina $(H_2O_{(l)} + CH_3NH_{2(aq)} \rightleftharpoons CH_3NH_{3(aq)}^+ + OH_{(aq)}^-)$ em uma solução 0,200 M em água é 4,2%. Qual é o pH da solução? Qual é o K_b da metilamina?
- 19. Complete a seguinte tabela calculando os itens que estão faltando e indique se a solução é ácida ou básica:

[H+]	[OH-]	рН	рОН	Ácida ou básica?
7,5×10 ⁻³ mol/L				
	3,6×10 ⁻¹⁰ mol/L			
		8,25		
			5,70	

- 20. Dê um exemplo de cada um dos seguintes tipos de força intermolecular: interação dipolo-dipolo, interação dipolo-dipolo induzido, interação íon-dipolo, forças de dispersão de London.
- 21. Descreva a formação de uma interação de hidrogênio entre duas moléculas de HF.
- 22. Explique o termo "polarizabilidade". Que tipo de moléculas tem tendência a ter polarizabilidades elevadas? Qual é a relação entre polarizabilidade e forças intermoleculares?
- 23. Os compostos Br_2 e $IC\ell$ têm o mesmo número de elétrons e, no entanto, o Br_2 funde a $-7,2^{\circ}C$ e o $IC\ell$ funde a $27,2^{\circ}C$. Explique.
- 24. Qual das substâncias em cada um dos seguintes pares terá o maior ponto de ebulição? Justifique a sua resposta em termos de forças intermoleculares atuantes: (a) Ne ou Xe, (b) CO₂ ou CS₂, (c) CH₄ ou Cl₂, (d) F₂ ou LiF, (e) NH₃ ou PH₃.
- 25. Quais das seguintes moléculas podem formar ligações de hidrogênio com outras moléculas *do mesmo tipo*: CH₃F; CH₃NH₂; CH₃OH; CH₃Br?