

2ª Lista de Exercícios QUI125 — Química Fundamental

- 1- O que é entalpia de ligação? As entalpias de ligação de moléculas poliatômicas são valores médios, enquanto as das moléculas diatômicas podem ser determinadas com precisão. Por quê?
- 2- A partir dos seguintes dados, calcule a entalpia média da ligação N-H.

$$\begin{split} NH_{3(g)} & \to NH_{2(g)} + H_{(g)} \\ NH_{2(g)} & \to NH_{(g)} + H_{(g)} \\ NH_{(g)} & \to N_{(g)} + H_{(g)} \end{split} \qquad \begin{aligned} \Delta H^\circ &= 435 \text{ kJ/mol} \\ \Delta H^\circ &= 381 \text{ kJ/mol} \\ \Delta H^\circ &= 360 \text{ kJ/mol} \end{aligned}$$

3- Determine o ΔH para cada uma das reações na fase gasosa:

(c)
$$2 \text{ Cl} - \text{N} - \text{Cl} \longrightarrow \text{N} = \text{N} + 3 \text{ Cl} - \text{Cl}$$

reações na rase gasosa:							
TABELA 8.4	Entalpias me	édias de ligação (kJ/mol)				
Ligações simples							
C — H	413	N-H	391	O-H	463	F — F	155
C - C	348	N-N	163	0 - 0	146		
C-N	293	N-O	201	O-F	190	Cl-F	253
C - O	358	N - F	272	O-Cl	203	Cl-Cl	242
C - F	485	N - CI	200	O-I	234		
C - CI	328	N - Br	243			Br — F	237
C — Br	276			S-H	339	Br — Cl	218
C-I	240	H-H	436	S-F	327	Br — Br	193
C-S	259	H - F	567	S - Cl	253		
		H - Cl	431	S — BR	218	I — Cl	208
Si — H	323	H — Br	366	S-S	266	I — Br	175
Si — Si	226	H-I	299			I-I	151
Si - C	301						
Si — O	368						
Si — Cl	464						
Ligações m	últiplas						
C = C	614	N = N	418	O ₂	495		
$C \equiv C$	839	$N \equiv N$	941				
C = N	615	N = 0	607	S = O	523		
$C \equiv N$	891			S = S	418		
C = O	799						
$C \equiv O$	1.072						

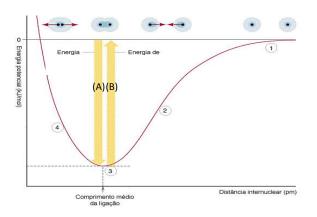
4- Com base em considerações energéticas, qual das seguintes reações ocorrerá mais facilmente?

$$\begin{aligned} Cl_{(g)} + CH_{4(g)} &\rightarrow CH_3Cl + H_{(g)} \\ Cl_{(g)} + CH_{4(g)} &\rightarrow CH_3 + HCl_{(g)} \end{aligned}$$

5- As substâncias iônicas KF, CaO e ScN são isoeletrônicas (têm o mesmo número de elétrons). Examine as energias de rede para cada uma destas substâncias e explique a tendência observada:

KF
$$\Delta H_{rede}$$
= 808 kJ/mol; CaO ΔH_{rede} = 3414 kJ/mol; ScN ΔH_{rede} = 7547 kJ/mol

6- Explique por que a energia de rede do cloreto de lítio (861 kJ/mol) é maior que a do cloreto de rubídio (695 kJ/mol), sabendo-se que os íons têm arranjo semelhantes na rede cristalina.

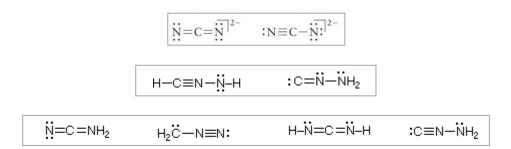


Universidade Federal de Juiz de Fora - Departamento de Química

- 7- Desenhe o diagrama de Born-Haber para a formação do composto LiCl, e escreva a fórmula para a obtenção da Energia de Rede.
- 8- Considere a formação do composto CaO. Com base nos dados abaixo calcule a segunda afinidade eletrônica do oxigênio.

Dados (em kJ/mol): ΔH_{sublimação} do Ca: 192, ΔH_{dissociação} do O₂: 495; 1ª EI do Ca: 590; 2ª EI do Ca: 1146; 1ª AE do O: -141; ΔH_{rede}: - 3511; ΔH_{formação} do CaO: - 635

- 9- Defina eletronegatividade e explique a diferença entre eletronegatividade e afinidade eletrônica.
- 10-Interprete o gráfico abaixo:



- 11-Coloque as ligações em cada um dos conjuntos em ordem crescente de polaridade: (a) C-F, O-F, Be-F; (b) N-Br, P-Br, O-Br; (c) C-S, B-F, N-O.
- 12-Coloque as seguintes ligações em ordem crescente de caráter iônico (utilize escalas de eletronegatividade encontradas na bibliografia): a ligação lítio-flúor em LiF, a ligação potássio oxigênio em K₂O, a ligação nitrogênio-nitrogênio em N₂, a ligação enxofre-oxigênio em SO₂, a ligação cloro-flúor em ClF₃.
- 13- Desenhe a estrutura de Lewis para as seguintes moléculas e íons: (a) SiH₄; (b) CO; (c) SF₂; (d) H₂SO₄ (H ligado a O); (e) ClO $_2^-$; (f) NH₂OH; (g) BH₃; (h) AsF $_6^-$; (i) XeF₄ (j) I $_3^-$, (k) PCl₃, (l) PCl₅, (m) PCl $_4^+$; (n) PCl $_6^-$
- 14-Escreva as estruturas de ressonância para o cátion nitril, NO_2^+ e do cloreto de nitrila, $CINO_2$ (N é o átomo central).

Universidade Federal de Juiz de Fora - Departamento de Química

15-Determine a carga formal de cada átomo dos seguintes íons e moléculas. Identifique a estrutura de energia mais baixa (mais estável) em cada um dos itens.

- 16-Explique por que o composto PF5 existe, enquanto o composto NF5 não.
- 17- Utilizando-se do modelo VSEPR, descreva a geometria das moléculas/íons e coloque em ordem crescente os ângulos H–N–H de (a) NH₄⁺, (b) NH₃, (c) NH₂⁻
- 18- As ligações Be-H na molécula do hidreto de berílio (BeH₂) são polares e, apesar disso, o momento de dipolo da molécula é zero. Explique.
- 19- Utilizando-se do modelo VSEPR, determine o arranho e a geometria molecular dos seguintes íons e moléculas: (a) CBr₄; (b) BCl₃; (c) NF₃; (d) SO₃; (e) CS₂; (f) SeF₄; (g) XeF₄; (h) BrO₃; (i) ICl₄⁻; (j) H₃O⁺. Quais dessas moléculas são polares?
- 20-Dê os valores aproximados para os ângulos de ligações indicados nas seguintes moléculas:

- 21- Disponha as seguintes moléculas em ordem crescente de momento de dipolo: H₂O; H₂S; H₂Te e H₂Se.
- 22-Indique o conjunto de orbitais híbridos usado pelo átomo central, a geometria dos orbitais atômicos híbridos, e a geometria da molécula, em cada um dos seguintes íons e moléculas: (a) BF₃, (b) AsF₃,(c) H₂S, (d) SO₃.
- 23-Descreva a estrutura do formaldeído, CH₂O (átomo de carbono é o átomo central) em termos de orbitais híbridos, ângulos de ligações e orbitais responsáveis pela formação das ligações σ e π .

Departamento de Química

Universidade Federal de Juiz de Fora - Departamento de Química

- 24-Esboce os orbitais moleculares do íon H₂ e desenhe o respectivo diagrama de níveis de energia.
 - (a) Calcule a ordem de ligação em H₂.
 - (b) Suponha que o íon seja excitado por um fóton, de forma que um elétron se mova de um OM de menor energia para um de maior. Você espera que o íon H₂⁻, neste estado excitado, fique estável?
- 25-Quais os orbitais moleculares formados a partir da combinação dos orbitais atômicos p? Coloque-os em ordem de energia crescente, considerando que não haja interação cruzada entre orbitais 2s e 2p (ex. moléculas diatômicas dos elementos mais pesados do 2° período, O_2 , F_2 e Ne_2).
- 26-Usando a teoria de orbitais moleculares prediga quais das seguintes moléculas diatômicas serão estáveis:

$$N_2^{2-}, O_2^{2-}, F_2^{2-}$$

Be₂, B₂, Li₂

- 27-Desenhe o diagrama de energia dos OMs dos seguintes íons: N₂⁺, N₂²⁺ e N₂⁻
 - (c) Dê a ordem de ligação esperada para cada espécie.
 - (d) Quais dessas espécies são paramagnéticas?
 - (e) O orbital ocupado de mais alta energia (HOMO) tem caráter σ ou π ?
- 28- A configuração eletrônica do estado fundamental do íon C_2^{n-} é $\sigma_{2s}^2 \, \sigma_{2s}^{*2} \, \pi_{2p}^4 \, \sigma_{2p}^2$. Qual a carga do íone sua ordem de ligação?
- 29- O que significa o termo paramagnetismo?
 - (f) De acordo com a teoria do orbital molecular, quais dos íons são paramagnéticos: O_2^+ , N_2^- , Li_2^+ , O_2^{2-} .