Dep. de Mecânica Aplicada e Computacional

1

3

4

5

Centro de gravidade, centróide, centro de massa de um corpo

MECÂNICA - MAC010

Dep. de Mecânica Aplicada e Computacional

2 de novembro de 2009

Centro de gravidade, centróide, centro de massa de um corpo

- 2 2
- **3** 3
- 4
- **5** 5
- 6 Centro de gravidade, centróide, centro de massa de um corpo

Dep. de Mecânica Aplicada e Computacional

1

3

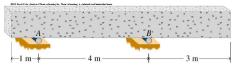
5

Centro de gravidade, centróide, centro de massa de um corpo

Centro de gravidade, Centro de massa e Centróide de um corpo

- Aplicações;
- Conceitos e definições;
- Determinação da localização.

Centro de gravidade, centróide, centro de massa de um corpo


Para projetar a estrutura de apoio de um tanque de água, é necessário conhecer os pesos do tanque, da água e a localização das resultantes das cargas distribuídas.

Carros esportivos podem capotar ao fazer curvas muito fechadas. Um aspecto importante no projeto destes veículos é o centro de massa - determinante para a maior ou menor estabilidade do carro.

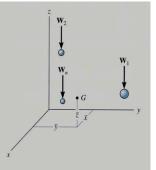
5 Centro de gravidade, centróide, centro de massa de um

corpo

A linha de ação da resultante de carregamentos distribuídos se localiza no centróide da área do carregamento.

Centro de gravidade, centróide, centro de massa de um corpo

Conceitos


Eixo de gravidade de um corpo é a linha de ação da resultante da força gravitacional que age sobre este.

Dep. de Mecânica Aplicada e Computacional

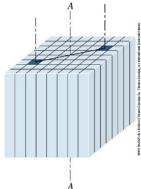
Centro de gravidade, centróide, centro de massa de um corpo

Conceitos

Um corpo rígido pode ser visto como uma coleção de pontos.

O peso de cada partícula é a força gravitacional da Terra pode-se considerar que os pesos das partículas que formam um corpo é um sistema de forças paralelas.

O eixo de gravidade de um corpo é vertical.


Dep. de Mecânica Aplicada e Computacional

3 4

Centro de gravidade, centróide, centro de massa de um corpo

Conceitos

Exemplo: em um bloco cúbico feito de material homogêneo, porções de mesmo volume têm o mesmo peso. O vetor peso resultante de dois prismas simetricamente localizados em relação ao eixo de simetria do cubo coincide com o eixo do prisma - conclui-se que o eixo de gravidade do cubo coincide com o eixo vertical central

Dep. de Mecânica Aplicada e Computacional

1

3

5

Centro de gravidade, centróide, centro de massa de um corpo

Teoremas

Se um corpo homogêneo possui um plano vertical de simetria, o eixo de gravidade está localizado neste plano. Exemplo: avião e navio, se o peso estiver distribuído simetricamente.

4
5
Centro de gravidade, centróide, centro

de massa de um

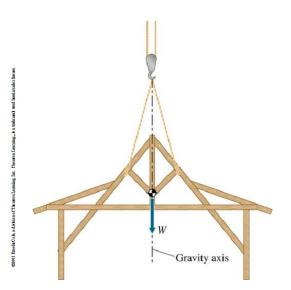
Se um corpo homogêneo possui um plano vertical de simetria, o eixo de gravidade está localizado neste plano. Exemplo: avião e navio, se o peso estiver distribuído simetricamente.

Se um corpo homogêneo possui dois planos verticais de simetria, o eixo de gravidade está localizado na linha de intersecção destes planos.

Exemplo: corpos esféricos e cúbicos feitos de material homogêneo.

Dep. de Mecânica Aplicada e Computacional

1


3

J

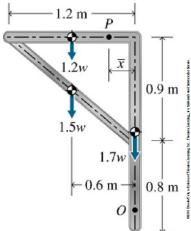
_

Centro de gravidade, centróide, centro de massa de um corpo

Teoremas

Conceitos

Se um sistema pode ser dividido em um número finito de partes cujos eixos de gravidade e pesos são conhecidos, é possível determinar o eixo de gravidade do corpo através da teoria das forças paralelas.


Dep. de Mecânica Aplicada e Computacional

2
 3
 4

Centro de gravidade, centróide, centro de massa de um corpo

Exemplo 1

Determinar o eixo de gravidade da estrutura abaixo, composta por barras de um mesmo material homogêneo e mesma seção transversal.

Dep. de Mecânica Aplicada e Computacional

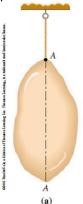
1

3

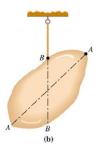
Cer

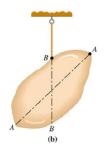
Centro de gravidade, centróide, centro de massa de um corpo

Exemplo 2


Uma chata que pesa 500kN carrega um transformador que pesa 150kN e está localizado de forma não-simétrica no convés, . como mostrado na vista superior da chata. Os eixos de gravidade do transformador e da chata são perpendiculares ao plano xy; as coordenadas do ponto onde o eixo de gravidade do transformador intercepta o plano xy são (20, 8) pés e as coordenadas do ponto em que o eixo de gravidade da chata intercepta o plano xy são (50, 12) pés. Localizar o eixo de gravidade do sistema.

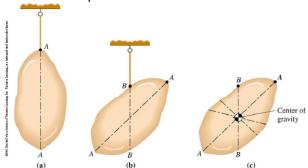
Suponha que um corpo é suspenso por uma corda em um ponto A:


Suponha que um corpo é suspenso por uma corda em um ponto A:


A linha vertical A-A é um eixo de gravidade.

Em seguida, suspenda o corpo pela mesma corda, mas presa no ponto B:

Em seguida, suspenda o corpo pela mesma corda, mas presa no ponto B:



Em seguida, suspenda o corpo pela mesma corda, mas presa no ponto B:

A linha vertical B-B é um eixo de gravidade.

Repetindo este processo várias vezes, obtém-se vários eixos de gravidade do corpo.

O centro de gravidade de um corpo é o ponto de intersecção de todos os eixos de gravidade do corpo.

Dep. de Mecânica Aplicada e Computacional

1

3

4

5

Centro de gravidade, centróide, centro de massa de um corpo

CG em coordenadas cartesianas

 Se um corpo for suspenso pelo centro de gravidade, ele estará em equilíbrio em qualquer orientação;

- Se um corpo for suspenso pelo centro de gravidade, ele estará em equilíbrio em qualquer orientação;
- Se qualquer eixo de gravidade de um corpo for determinado, o centro de gravidade está localizado nesse eixo;

- Se um corpo for suspenso pelo centro de gravidade, ele estará em equilíbrio em qualquer orientação;
- Se qualquer eixo de gravidade de um corpo for determinado, o centro de gravidade está localizado nesse eixo;
- Se determinarmos dois eixos de gravidade quaisquer, correspondentes a duas orientações distintas do corpo, o centro de gravidade é a intersecção destes eixos.

Dep. de Mecânica Aplicada e Computacional

1

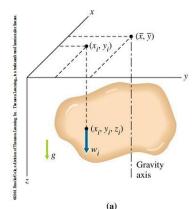
3

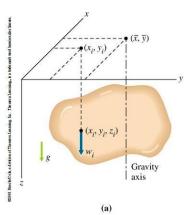
5

Centro de gravidade, centróide, centro de massa de um corpo

CG em coordenadas cartesianas

Método para determinação das coordenadas do CG: ao invés de considerar como o eixo de gravidade varia quando o corpo é girado, vamos imaginar o corpo fixo e a orientação da força da gravidade variando.

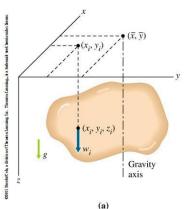

Dep. de Mecânica Aplicada e Computacional


2 3 4

Centro de gravidade, centróide, centro de massa de um corpo

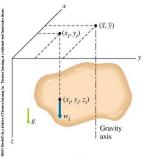
CG em coordenadas cartesianas

Método para determinação das coordenadas do CG: ao invés de considerar como o eixo de gravidade varia quando o corpo é girado, vamos imaginar o corpo fixo e a orientação da força da gravidade variando.



Para localizar o CG, o corpo é

considerado como um agregado de partículas i com pesos w_1, w_2, w_3, \ldots


Admite-se inicialmente a gravidade agindo na direção z positiva.

O momento provocado pelo

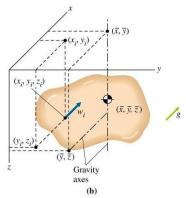
peso w_i do i-ésimo elemento em relação aos eixos x e y são:

$$M_{xi} = w_i y_i$$
 $M_{yi} = -w_i x_i$

Os momentos do peso de todo o corpo em relação aos eixos x e y são:

$$M_x = \sum w_i y_i$$
 $M_y = -\sum w_i x_i$

.


O vetor resultante do peso (W) exerce o mesmo momento em relação aos eixos x e y e está aplicado no CG do corpo, de coordenadas \overline{x} e \overline{y} :

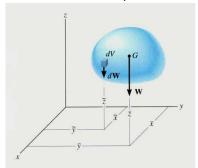
$$M_x = \sum w_i y_i = W \overline{y}$$
 $M_y = -\sum w_i x_i = -W \overline{x}$

Daí:

$$\overline{x} = \frac{\sum w_i x_i}{W}$$
 $\overline{y} = \frac{\sum w_i y_i}{W}$

Para determinar a terceira coordenada \overline{z} , supõe-se que a gravidade age na direção positiva de x.

$$M_y = \sum w_i z_i = W \overline{z}$$
 $\overline{z} = \frac{\sum w_i z_i}{W}$


Coordenadas do CG:

$$\overline{x} = \frac{\sum w_i x_i}{W}$$

$$\overline{y} = \frac{\sum w_i y_i}{W}$$

$$\overline{z} = \frac{\sum w_i z_i}{W}$$

Considerando uma partícula arbitrária localizada em $(\tilde{x}, \tilde{y}, \tilde{z})$:

$$\overline{x} = \frac{\int \tilde{x} dW}{\int dW}$$
 $\overline{y} = \frac{\int \tilde{y} dW}{\int dW}$ $\overline{z} = \frac{\int \tilde{z} dW}{\int dW}$

O peso infinitesimal dW deve ser expresso em função do volume infinitesimal dV. Se γ é o peso específico do corpo, dado em peso por unidade de volume, então: $dW = \gamma dV$, e:

$$\overline{x} = \frac{\int_{V} \tilde{x} \gamma dV}{\int_{V} \gamma dV}$$

$$\overline{y} = \frac{\int_{V} \tilde{y} \gamma dV}{\int_{V} \gamma dV}$$

$$\overline{z} = \frac{\int_{V} \tilde{z} \gamma dV}{\int_{V} \gamma dV}$$

O peso específico γ de corpos homogêneos é constante, e daí:

$$\overline{x} = \frac{\int_{V} \tilde{x} dV}{\int_{V} dV}$$

$$\overline{y} = \frac{\int_{V} \tilde{y} dV}{\int_{V} dV}$$

$$\overline{z} = \frac{\int_{V} \tilde{z} dV}{\int_{V} dV}$$

O CG de corpos homogêneos coincide com o centróide, que é uma propriedade geométrica de um volume.

Podem ser determinados centróides de volume, área e linha

Procedimento geral para determinação de centróide de área:

 Escolher um elemento diferencial dA apropriado, em um ponto genérico (x, y) (em geral, se y é facilmente expresso em termos de x, emprega-se um elemento retangular vertical, senão, um elemento horizontal);

Podem ser determinados centróides de volume, área e linha

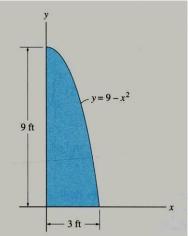
Procedimento geral para determinação de centróide de área:

- Escolher um elemento diferencial dA apropriado, em um ponto genérico (x, y) (em geral, se y é facilmente expresso em termos de x, emprega-se um elemento retangular vertical, senão, um elemento horizontal);
- Expressar dA em termos do elemento de diferenciação dx (ou dy);

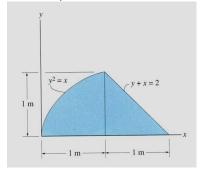
Podem ser determinados centróides de volume, área e linha

Procedimento geral para determinação de centróide de área:

- Escolher um elemento diferencial dA apropriado, em um ponto genérico (x, y) (em geral, se y é facilmente expresso em termos de x, emprega-se um elemento retangular vertical, senão, um elemento horizontal);
- Expressar dA em termos do elemento de diferenciação dx (ou dy);
- Determinar as coordenadas (\tilde{x}, \tilde{y}) do centróide do elemento retangular em termos das coordenadas genéricas (x, y);


Podem ser determinados centróides de volume, área e linha

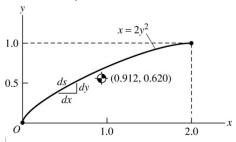
Procedimento geral para determinação de centróide de área:


- Escolher um elemento diferencial dA apropriado, em um ponto genérico (x, y) (em geral, se y é facilmente expresso em termos de x, emprega-se um elemento retangular vertical, senão, um elemento horizontal);
- Expressar dA em termos do elemento de diferenciação dx (ou dy);
- Determinar as coordenadas (\tilde{x}, \tilde{y}) do centróide do elemento retangular em termos das coordenadas genéricas (x, y);
- Expressar todas as variáveis e os limites de integração na fórmula usando ou x ou y, dependendo de o elemento de diferenciação ser em termos de dx ou de dy, respectivamente, e integrar.

Exemplo 1

Determinar a localização do centróide da área ilustrada.

Determinar a localização do centróide da área ilustrada.


3 4 5

Centro de gravidade, centróide, centro de massa de um corpo 1

3

5

Centro de gravidade, centróide, centro de massa de um corpo Determinar a localização do centróide da linha ilustrada.

