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Abstract. Post-stroke motor rehabilitation is a challenging problem in the med-
ical field. Considering this, Brain-Computer Interfaces (BCI) have proven to
obtain positive results, especially for chronic stroke. However, as electroen-
cephalogram data collection for BCI can be challenging, Data Augmenta-
tion (DA) methods can reduce data collection and simplify training. This study
proposes analyzing the temporal behavior of the accuracy instead of analyzing it
in fixed intervals, as it is commonly done. Six DA methods and five classification
models were evaluated for different scenarios. Results show Filter Bank Com-
mon Spatial Pattern is consistent while EEGNet peaks at 2.5 seconds. Sliding
Window DA improves response time by 16% and enhances model robustness.

1. Introduction
Strokes are one of the leading causes of death in the world, they also reduce the qual-
ity of life and can lead to paralysis in limbs [Pacheco-Barrios et al. 2022]. Considering
this, the Motor Imagery (MI) paradigm in the Brain-Computer Interface (BCI) field have
been profusely used in motor rehabilitation. BCI is a way to connect the brain and an
external device [Wolpaw et al. 2000]. Commonly, this device is a computer that receives
the electrical activity from the brain. Electroencephalogram (EEG) is the most common
device for collecting brain signals since it is cheaper, faster, and easier to apply. Besides
its practicality, it is safer than the invasive collection of signals, which uses internal elec-
trodes in the brain. Even with it being faster than other methods, collecting enough data
for training models can be tedious for the subject.

Data augmentation (DA) is a well-known procedure in Machine Learning.
Many methods have been proposed in Computer Vision and Natural Language Pro-
cessing [Li et al. 2022a, Mumuni and Mumuni 2022], among other areas. Those ap-
proaches can also be used in the MI paradigm. In this case, DA methods are grow-
ing and showing positive results in the MI-BCI area [Faria et al. 2022], presenting ad-
vantages such as avoiding overfitting and increasing the training data when data is
scarce [Freer and Yang 2020].

Usually, a fixed time accuracy is used to evaluate the DA methods. That can lead
to discarding classifiers based on a punctual result instead of analyzing its full temporal
behavior; Considering this, this article proposes to evaluate the temporal behavior of DA
methods with different classifiers. The results show that Filter Bank Common Spatial
Pattern (FBCSP) has more temporal robustness than EEGNet. Moreover, it is shown that
Sliding Window (SW) can increase EEGNet’s stability over time.



2. Related Work

The first in-depth comparison of DA methods in the MI-BCI area compared Riemannian
Classifier, Convolutional Neural Networks, and Convolutional Long-Short Time Mem-
ory (C-LSTM) when using the following DA methods [Freer and Yang 2020]: Gaussian
Noise (GN), Signal Multiplication, Signal Flip, and Frequency Shift. The results pointed
out that average overall accuracy increases with DA.

Experiments similar to those in [Freer and Yang 2020] were performed
in [Zhang et al. 2020]. However, in [Zhang et al. 2020], DA was applied in the Time-
Frequency domain after a Short-Time Fourier Transform, with GN, Geometric Trans-
formation, and Deep Convolutional Generative Adversarial Networks (DCGAN). The
augmented and non-augmented data were then classified using a Deep Neural Net-
work (DNN) also in the Time-Frequency domain. DCGAN provided better results than
traditional DA methods, and DA improved classification.

In a later paper [Lashgari et al. 2021], experiments were performed with five DA
methods using a proposed Convolutional Neural Network (CNN) classifier. The five DA
methods are Sliding Window (SW), GN, a Generative Adversarial Network (GAN), Time-
Frequency Recombination (TFR) and Empirical Mode Decomposition (EMD). The pro-
posed Neural Network (NN) outperforms state-of-the-art with and without DA.

An evaluation of five different DA methods (GN, SW, TFR, Time-Frequency GN,
EMD, and SW+TFR) was also performed using EEGNet [Faria et al. 2022]. The exper-
iment was performed by reducing the original data and filling it with DA, obtaining the
best result with SW+TFR.

Instead of evaluating BCI for a single paradigm, there was also a comparison of
three DA methods (Performance-Measure-Based Time Warp, Time-Frequency GN, and
Frequency Masking) for Awareness Recognition, MI, and Steady-State Visually Evoked
Potentials (SSVEP) [Li et al. 2022b]. It was concluded that the CNN models were im-
proved when using DA.

A Spatial Variation Generation DA method for MI was proposed
by [Qin et al. 2023]. It compared Hemisphere Perturbation, GN, Random Shift,
Mixup, Frequency Shift, and TFR and five Deep Learning models, obtaining promising
results. Many datasets were used in the related works described, such as BCI III Compe-
tition, BCI IV Competition (1, 2a, and 2b), Taiwan Driving Dataset, Sleep Physionet, and
Physionet MI. All these datasets differ in the number of subjects, trials, and electrodes,
which shows how wide are the situations where DA can be used.

There are also many other which have proposed DA methods in the litera-
ture [Fahimi et al. 2021, Kim et al. 2023, Luo et al. 2021] or which have used known
methods [Huang et al. 2020, Choi et al. 2022, Yang et al. 2021]. Even though many ar-
ticles present a robust analysis of the classifiers, DAs, and datasets used, none of them
analyzed the accuracy through the trials. Usually, when analyzing accuracy, the common
practice is fixing a time and getting the average per trial. However, analyses with a fixed
time can be quite a narrow approach to BCI as this is a multi-objective problem. This
negligence can lead to choosing models with higher accuracies than others but requires a
long delay to reach this quality level. Here, Window-Delay Score [de Souza et al. 2023]
is used to broaden the view when analyzing DA methods.



3. Datasets
The BCI Competition IV [Tangermann et al. 2012], as well as the previous competitions,
consists of delivering high-quality open-access data for BCI. Also, as it is a competition,
the challenge is to see scientists from many areas other than BCI proposing new ideas and
enhancing the analysis methods. Usually, these competitions focus on accuracy or Kappa
score, guiding models to a biased path. Even so, the datasets still contribute a lot to the
evolution of research in this area.

3.1. BCI Competition IV 2a

The dataset 2a of BCI Competition IV (BCICIV2a) was recorded with 22 electrodes with
a sampling of 250Hz. The signal was collected between 0.5 − 100Hz and a notch filter
of 50Hz. It was recorded for nine subjects in two sessions, with 288 trials each. The 288
trials are equally divided for each class: left-hand, right-hand, tongue, and feet. Each trial
begins with a warning sound, and in the first two seconds, a fixation cross is displayed on
the computer screen. After this, a cue is presented in the next 1.25 seconds overlapping
with the motor imagery that starts at the third second. After three seconds of imagery, the
trial ends with a total duration of 6 seconds, followed by a brief pause until the new trial.

3.2. BCI Competition IV 2b

Dataset 2b of BCI Competition IV (BCICIV2b) has a configuration of 3 electrodes (C3,
Cz, C4) also with a sampling of 250Hz. Two filters were applied during the acquisition: a
0.5−100Hz bandpass filter and a 50Hz notch filter. Its data was recorded for nine subjects
in five sessions with 120 trials per session equally divided amongst the two classes: left-
hand and right-hand. The first two sessions did not show feedback for the subject, unlike
the last three, which show screening feedback. The sessions without feedback begin with
a fixation cross shown for 3 seconds with a warning sound in the second second. The cue
for the imagery starts right after these three seconds, for 1.25 seconds. The cue overlaps
in the last fifth with the beginning of the imagery starting at the second four and lasts three
seconds. Following this, there is a pause for the new trial. The other three sessions are
different. Firstly, a grey smiley face is presented for 3.5 seconds, followed by a smiley
feedback imagery for 4 seconds. Also, a warning sound is played in the second second.
The cue is shown during the whole feedback imagery, starting half a second sooner.

4. Classifier Methods
This section presents the models used for the experiments with DA methods. For spatial
filtering, Common Spatial Pattern is described, and its complement with a Filter Bank.
The Single Electrode Energy model and the Convolutional Neural Network EEGNet are
also described.

4.1. Common Spatial Pattern

Common Spatial Pattern (CSP) is a spatial filter that increases the difference of the sig-
nals for two classes while reducing the difference inter-class. CSP transforms the data
by a linear transformation as Xi = W TXi, where Xi is the i-th trial of the training data,
and W T is the fitted matrix found out by CSP. W T is composed by m

2
first columns and

m
2

last columns from the generalized eigenvalue problem of CSP [Ang et al. 2012]. The



transformation matrix of CSP has m columns and E rows, where E is the number of elec-
trodes and m is a hyper-parameter of CSP. The LogPower feature extraction function is
commonly used to optimize the CSP performance. In this approach, LogPower is defined
as

Zi = log

(
diag(Ri)

tr(Ri)

)
(1)

where Ri is the correlation matrix given by Ri = XiX
T
i , diag(·) is the diagonal of a

matrix, and tr(·) is the trace of a matrix. Moreover, CSP is also used as a pipeline’s name
with a bandpass filter and a classifier. In this work, the CSP pipeline is composed of a
bandpass filter, CSP filter, LogPower extraction, and the classifier Naive-Bayes Parzen
Window (NBPW).

4.2. Filter Bank Common Spatial Pattern

Filter Bank CSP (FBCSP) is a BCI pipeline that uses CSP with many bandpass fil-
ters [Ang et al. 2012]. In FBCSP, the training data pass through a set of bandpass filters,
followed by CSP in each sub-band. As the number of features extracted using FBCSP is
larger than CSP, a filter selection step is added to FBCSP. The complete FBCSP pipeline
has a set of bandpass filters, a set of CSP filters, the LogPower function, the feature se-
lection Mutual Information-based Best Individual Feature (MIBIF), and the NBPW clas-
sifier.

4.3. Single Electrode Energy

Single Electrode Energy (SEE) [de Souza et al. 2021] is a simple BCI pipeline for MI
that uses only a single electrode. This method applies the LogPower function presented
in Equation 1 after a bandpass filter, and its feature value is used to classify the signal.
Two ways to classify the signal in SEE were proposed, namely: (i) Median-SEE: using the
median of the training data to separate the classes; or (ii) Sigmoid-SEE: fitting a sigmoid
function using the training data.

4.4. EEGNet

EEGNet [Lawhern et al. 2018] is a CNN based on FBCSP [Ang et al. 2012]. It aims to
join all the steps used in FBCSP in its architecture. EEGNet is composed of a tempo-
ral convolution set to perform the temporal filtering. The spatial convolution represents
the spatial filter from the standard BCI pipeline. After that, it has a separated convo-
lution, similar to feature extraction, and, finally, a Softmax layer performs the classifi-
cation. CNN topology presented better results when compared to other Deep Learning
techniques such as shallow-ConvNet and deep-ConvNet. Moreover, due to its simplic-
ity, EEGNet can be implemented in Field Programmable Gate Arrays (FPGA) or other
embarked systems.

5. Data Augmentation Methods
Data augmentation is a technique in which data is amplified with slightly modified copies
of its instances [Mumuni and Mumuni 2022]. It usually prevents overfitting in models,
but it can also be used where the initial dataset is small or to improve the model’s ac-
curacy. Here, we evaluate six data augmentation methods: Gaussian Noise, Sliding



Window, Time-Frequency Recombination (Fixed Time), Time-Frequency Recombination
(Fixed Frequency), Time-Frequency Gaussian Noise, and Empirical Mode Decomposi-
tion1. Some methods can be applied to any dataset, such as Gaussian Noise. On the other
hand, other ones are more specific to EEG data, such as Time-Frequency Recombination.

5.1. Gaussian Noise

The Gaussian Noise addition is the simplest data augmentation method evaluated in this
work. It consists of perturbing the original data with a normal distribution noise. Then,
the perturbed signal is inserted in the original dataset to increase its size. This generation
of an artificial trial X ′

i can be expressed as X ′
i = Xi+ ξ where Xi ∈ RE×T is the i-th trial

from the original dataset, E is the number of electrodes, T its the number of timestamps
in the trial, and ξ ∼ N (µ, σ2). After that transformation, the artificial trial has the same
dimension and domain as the original trial.

5.2. Sliding Window

Sliding Window is a method that uses different window positions by shifting its start
time [Faria et al. 2022]. This method uses the features collected by different timestamps
to prevent overfitting. When using the Sliding Window method, no artificial trial is cre-
ated. Instead, the used windows are shifted. Therefore, SW can find out more features
due to the non-stationary behavior of EEG signals.

5.3. Time-Frequency Recombination (Fixed Time)

Time-Frequency Recombination-Fixed Time (TFR-T) consists of decomposing the input
into different segments and then combining segments from random trials to reconstruct
an artificial signal [Lotte 2015]. The following steps describe this method:

1. Each trial is converted to the time-frequency domain using a Short-Time Fourier
Transform (STFT).

2. Different trials are drawn and grouped by each segment time, forming an artificial
trial M ′

i as
M ′

i = [M(1,r),M(2,r), ...,M(T ′,r)] (2)

where Mi ∈ CE×F×T ′ , the dimension T ′ represents the segment timestamp and F
the frequencies in which the signal is decomposed. Also, in Equation (2), r is a
different random number for each segment time in the interval 1, ..., N , and N is
the number of trials of a given class.

3. The new trials M ′(i) are converted back to the time domain by applying an inverse
STFT.

5.4. Proposed approach Time-Frequency Recombination (Fixed Frequency)

Time-Frequency Recombination-Fixed Frequency (TFR-F) is performed as TFR-T pre-
sented in Section 5.3. However, in the second step of the method, the draws are performed
by grouping the frequency bins instead of concerning time as F ′

i = [F(1,r), F(2,r), ..., F(F,r)]
where Fi ∈ CE×T ′×F . In addition, r is a random number in 1, ..., N drawn from a uniform
distribution that is different for each frequency in the Time-Frequency domain. Then, the
new artificial trials go through the inverse STFT and are inserted into the original dataset.

1https://github.com/stephanJoao/bci-data-augmentation



5.5. Time-Frequency Gaussian Noise
Time-Frequency Gaussian Noise (TFGN) works similarly to the Gaussian Noise method
presented in Section 5.1. However, similarly to TFR-F, the noise is added in the
time-frequency domain. Therefore, it is converted using an STFT as above, creating
TFi ∈ CE×F×T ′ . After this, the amplitude and phase of the complex numbers in TFi are
extracted into A(i) ∈ RE×F×T ′ and ϕ(i) ∈ RE×F×T ′ . To generate a new trial from this, a
trial is coped, and its amplitude is perturbed as A′(i) = A(i)+ ξ where ξ is a random value
sampled from a normal distribution ξ ∼ N (µ, σ2). The artificial trials can be obtained by
applying TF ′

i = A′
i · eϕij to each trial. After that, the inverse STFT transforms the signal

back to the time domain. Finally, the artificial trial is inserted into the original dataset.

5.6. Empirical Mode Decomposition
Empirical Mode Decomposition is a well-known method in signal process-
ing [Huang et al. 1998], in which a nonlinear and non-stationary signal is decomposed
into a set of intrinsic mode functions (IMF) and a residue. With this technique, a trial Xi

can be decomposed in K IMFs as

Xi =
K∑
k=1

ci,k + ri,K (3)

where rn is the residue and ci,k is the k-th IMF for the i-th trial. Then, different IMFs are
randomly chosen and summed to form a new artificial signal.

6. Computational Experiments
This section describes the computational experiments and their results. The training win-
dow for the data augmentation methods is [0.5 − 2.5s] where 0s is the cue onset. The
exception was the SW, which varies from [0 − 2s] to [2 − 4s] with a step of 0.5s. Thus,
SW increases the train data by a factor of 5 while the other methods increase this data by
1.5. We performed the experiments using a 5-fold stratified cross-validation. The begin-
ning of the test windowing varied from −2s to 2s before the end of the motor imagery
since 2s is the window’s size. The timestep of the windowing in this interval is 0.1s. For
both datasets, we used two classes: left-hand and right-hand. The data was resampled
with 128Hz, and a 4− 40Hz bandpass filter was applied.

We performed preliminary experiments and chose the following parameters for
the models. For CSP, we used m = 2 pairs. In FBCSP, m was also 2 with eight features
selected in MIBIF. In addition, FBCSP has its bandpass filter: [4 − 8Hz], [8 − 12Hz],
[12 − 16Hz] , [16 − 20Hz], [20 − 24Hz], [24 − 28Hz], [28 − 32Hz], [32 − 36Hz], and
[36 − 40Hz]. In EEGNet, we used eight temporal convolutions of size 64, two spatial
convolutions, and 16 separable convolutions of size 16. The dropout rate for the method
was 0.5, a learning rate of 0.001 with 1000 iterations, and a batch size of 64. Its important
to highlight that all DA methods were applied only to the training data. For the GN data
augmentation, the parameters for the normal distribution are µ = 0 and σ = 0.1, as in
the literature [Lashgari et al. 2021, Faria et al. 2022]. For STFT on TFR-T, TFR-F, and
TFGN methods, the size of the STFT window is 128 with the Hann window type. The
Gaussian noise added in TFGN uses the same parameters as the normal distribution in
GN. Lastly, for EMD, the only parameter used is the maximum number of IMFs as 9.



Table 1. WD-score and accuracy results for 22 electrodes case. The non-
dominated results are in boldface.

Median-SEE Sigmoid-SEE CSP FBCSP EEGNet
Baseline (2.4, 0.5475) (2.9, 0.5262) (2.5, 0.7473) (2.4, 0.8252) (2.5, 0.8306)

GN (2.5, 0.5401) (3.0, 0.5251) (2.4, 0.7431) (2.4, 0.8148) (2.5, 0.8256)
SW (2.9, 0.5455) (2.2, 0.5378) (2.9, 0.7396) (2.2, 0.8171) (2.5, 0.7693)

TFR-T (2.5, 0.5313) (2.5, 0.5285) (2.3, 0.7438) (2.5, 0.8349) (2.5, 0.8148)
TFR-F (5.1, 0.5112) (2.1, 0.5409) (2.5, 0.7473) (2.6, 0.8202) (2.5, 0.8306)
TFGN (2.8, 0.5370) (2.8, 0.5247) (2.3, 0.7392) (2.3, 0.8210) (2.5, 0.8218)
EMD (2.5, 0.5289) (2.6, 0.5278) (2.4, 0.7087) (2.2, 0.6659) (2.5, 0.8002)

Table 2. WD-score and accuracy results for 3 electrodes case without feedback.
The non-dominated results are in boldface.

Median-SEE Sigmoid-SEE CSP FBCSP EEGNet
Baseline (2.4, 0.5295) (2.3, 0.5326) (2.6, 0.6076) (2.5, 0.6487) (2.5, 0.6321)

GN (2.4, 0.5473) (1.6, 0.5129) (2.6, 0.6121) (2.5, 0.6321) (2.5, 0.6281)
SW (1.7, 0.5237) (2.0, 0.5308) (2.5, 0.6165) (2.7, 0.6504) (2.1, 0.5804)

TFR-T (2.4, 0.5313) (2.1, 0.5188) (2.5, 0.6103) (2.5, 0.6611) (2.5, 0.6138)
TFR-F (2.3, 0.5295) (2.9, 0.5429) (2.6, 0.6080) (2.7, 0.6424) (2.5, 0.6330)
TFGN (1.8, 0.5362) (2.3, 0.5321) (2.5, 0.6000) (2.4, 0.6272) (2.5, 0.6170)
EMD (2.3, 0.5424) (3.4, 0.5286) (2.7, 0.6138) (2.5, 0.6518) (2.5, 0.6027)

Table 3. WD-score and accuracy results for 3 electrodes case with feedback. The
non-dominated results are in boldface.

Median-SEE Sigmoid-SEE CSP FBCSP EEGNet
Baseline (2.5, 0.5778) (2.1, 0.5766) (2.5, 0.7290) (2.6, 0.7701) (2.5, 0.7491)

GN (2.5, 0.5792) (2.4, 0.5776) (2.5, 0.7210) (2.9, 0.7682) (2.5, 0.7386)
SW (3.7, 0.5657) (2.7, 0.5624) (3.0, 0.7306) (2.9, 0.7836) (2.5, 0.7012)

TFR-T (2.3, 0.5857) (2.5, 0.5755) (2.5, 0.7357) (2.8, 0.7787) (2.5, 0.7491)
TFR-F (2.5, 0.5624) (2.4, 0.5722) (2.7, 0.7336) (2.7, 0.7804) (2.5, 0.7360)
TFGN (2.1, 0.5636) (2.4, 0.5650) (2.8, 0.7224) (2.8, 0.7720) (2.5, 0.7386)
EMD (2.4, 0.5883) (2.5, 0.5729) (2.5, 0.7255) (2.8, 0.7771) (2.5, 0.7107)

We compared the WD-score and accuracy values reached by the methods tested
here for each dataset. Moreover, we present the non-dominated results, and, in Sec-
tion 6.4, compare the average accuracies through the time of trials. The cases analyzed
are 22 electrodes, three electrodes without feedback, and three electrodes with feedback.

6.1. Many electrodes

The BCICIV2a dataset was chosen for its better spatial resolution once it has 22 elec-
trodes. With the higher spatial resolution, we need more trials to reduce overfitting, mak-
ing it a good candidate for DA. We used the left-hand and right-hand classes from BCI-
CIV2a. Table 1 presents the WD-score and accuracy results. FBCSP with TFR-T presents
the highest accuracy (0.8349). In this and the following analysis, we will not evaluate the
results obtained with median- and sigmoid-SEE methods as they did not give prominent
results for any case. Considering this, SW-FBCSP had the lower WD-score, which means
it can reach higher accuracy faster than other combinations. It is also clear that the WD-
score did not vary significantly from its expected value of 2.5s, especially for EEGNet.
The general results pointed out that the accuracy did not change significantly with the DA
methods. The only exception is in FBCSP, in which EMD worsens the accuracy. Figure 1
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Figure 1. Pareto set for 22 electrodes. Each dot is a pair [DA, Classifier]. Black
dots are non-dominated pairs.
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Figure 2. Pareto set for 3 electrodes without feedback. Each dot is a pair [DA,
Classifier]. Black dots are non-dominated pairs.

is the Pareto set of the experiment with many electrodes. All non-dominated points are in
the interval 2− 2.5s, which is expected since 2.5s is the end of the training window. All
these points are also from FBCSP, with the best result at 2.5. Better results for FBCSP in
the many electrode cases are expected due to the spatial characteristics of the method.

6.2. Few electrodes

For few electrodes, we performed the experiments individually for each session. This
way, each session of dataset BCICIV2b was considered an individual dataset with a small
number of trials. In this section, the results are the junction of the output of the first two
sessions, with no feedback to the subject. This experiment aims to evaluate the impact
of DA methods when compared to a much larger dataset such as BCICIV2a. Table 2
presents the obtained results. The best result is also obtained by FBCSP with TFR-F
with an accuracy of 0.6611. SW-EEGNet found the lowest WD-score Moreover, it was
the only DA that decreased the WD-score for EEGNet. Apart from this, the WD-score
maintains itself close to the value of 2.5s for all methods. Once again, as seen in Figure 2
all non-dominated points are in the interval [2 − 2.5s]. The higher ones are both from
FBCSP, which is not significantly affected by the DA methods, whereas the point in 2.1s
is from EEGNet with SW.
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Figure 3. Pareto set for 3 electrodes with feedback. Each dot is a pair [DA, Clas-
sifier]. Black dots are non-dominated pairs.

6.3. Few electrodes with feedback

Table 3 presents the WD-score and accuracy results for the sessions with feedback. SW-
FBCSP obtained the higher accuracy (0.7836), while EEGNet had the best WD-score.
Moreover, EEGNet had the same WD-score no matter the DA method. As seen in Fig-
ure 3, the three non-dominated points in the Pareto set from FBCSP are between 2.5 and
3.0s. WD-score for the case with feedback was higher, as expected given that the subject
has its attention divided while waiting for the online feedback.

6.4. Discussion

When using WD-score, we get a fairer accuracy for each combination of model and classi-
fier, but some temporal behavior of the metric is still lost, such as the consistency through-
out time. In Figure 4, the average accuracy in the results was plotted for each discrete
time for each DA method. We decided to show only FBCSP and EEGNet graphics as
they bring more to the table for discussion. In Figures 4a, 4c, and 4e, the DA methods
do not influence significantly the accuracy over time with FBCSP, except with EMD in
BCICIV2a. Also, it is clear how the accuracy increases smoothly until 2.5s and then
smoothly decreases. Especially in Figure 4c, DA methods brought more differentiation
since the datasets have fewer trials. And, in Figure 4f with feedback, accuracy decreases
slower after the peak. Results for the EEGNet can be seen in Figures 4b, 4d, and 4f.
EEGNet curve is much steeper than FBCSP around the 2.5s peak. For EEGNet, datasets
with fewer trials also bring more differentiation, as seen in Figure 4d. In these graphics,
even though the other DA methods do not influence much in the accuracy behavior, the
SW method increases EEGNet stability over time. This way, the EEGNet curve starts in-
creasing after and takes more time to decrease, widening the peak’s plateau. This stability
improves the application in real-time since it is desired that the task is executed for 4s in
the evaluated datasets.

7. Conclusion

Brain-Computer Interfaces have a significant role in post-stroke motor rehabilitation and
controlling mechanical prostheses. However, it has some downpoints, such as the tedious-
ness of recording training data and the subject-dependence of the models. Deep learning
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(a) FBCSP 22 electrodes.
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(b) EEGNet 22 electrodes.
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(c) FBCSP 3 electrodes without feedback.
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(d) EEGNet 3 electrodes without feedback.
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(e) FBCSP 3 electrodes with feedback.
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(f) EEGNet 3 electrodes with feedback.

Figure 4. Data augmentation average accuracies through the time of trials.

models obtain positive results in the DA literature. But even with positive results, some
studies are narrowly focused on accuracy and Kappa score in just one fixed timestamp.

We analyze here the temporal behavior of accuracy for different classifiers and
data augmentation methods using WD-score. Our studies tested five different classifiers:
Median-SEE, Sigmoid-SEE, CSP, FBCSP, and EEGNet. Moreover, we used three dif-
ferent datasets: many electrodes with many trials, few electrodes and trials without feed-
back, and with feedback. For all these cases, we used six different DA methods: GN, SW,
two variations of TFR, TFGN, and EMD. All these analyses allowed us to evaluate how
DA methods impact the temporal behavior of the accuracy metric. Amongst all cases,
few electrodes without feedback had the least number of trials and had more variations in
their results. However, the DA methods haven’t influenced expressive results or increases,
except for SW. The SW method has shown its importance to EEGNet because it increased
the stability of EEGNet across time. Furthermore, SW reduced the time for peak accuracy



with EEGNet in 16% for few electrodes without feedback.

For future works, many possibilities arise in the temporal analysis of BCI models.
For instance, a combined analysis of Transfer Learning and DA can create a more robust
model. Moreover, the evaluation of WD-score for deeper CNN can be performed to verify
if the SW behavior remains the same for different architectures. Finally, more DA models
can be tested across time or used with other paradigms.
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