
Applying pathfinding techniques on the development of an Android game
Paulo Vitor Freitas da Silva∗ Saulo Moraes Villela

Universidade Federal de Juiz de Fora, Departamento de Ciência da Computação, Brasil

ABSTRACT

Mobile devices are present, more and more, in our daily life. As the
most of these devices have low memory and low processing power,
the developers need to be smart and creative to develop applica-
tions that can be performed quickly and efficiently. This work aims
to face these limitations and apply artificial intelligence techniques,
which usually require long time processing and large memory us-
age, on the development of an Android game. We chose the An-
droid platform because it is the most popular nowadays for mobile
devices. We developed a maze game, where the player must fol-
low a path to reach a goal, escaping from enemies. The enemies
use pathfinding techniques, trying to reach the player. Each en-
emy has been implemented with a different pathfinding technique,
and the behaviors and performances were evaluated and compared.
We implemented the uninformed (blind) search strategies breadth-
first search, depth-first search and uniform-cost (ordered) search,
and the informed (heuristic) search strategies greedy search and A*
search. We observed, as expected, that techniques using informa-
tion of the problem domain are more promising, because they can
find good paths and also run in a satisfactory time. Thus, we showed
that it is possible to create an Android game, applying these meth-
ods, ensuring its fluidity and the user’s enjoyment.
Keywords: Android, Artificial Intelligence, Pathfinding, Mobile,
Games

1 INTRODUCTION

It is well known the intense growth of the mobile market. With
it, arises in the same proportion the demand for development of
technologies and software that enhance the functionality of these
devices. And one of these demands is, especially, the game devel-
opment. The limitation of processing power and memory capacity
of this type of device makes developers for mobile devices have to
exercise their creativity and knowledge to create games that are able
to run with these restrictions and bring entertainment to the user at
the same time.

This paper describes the development of a game for Android de-
vices where we apply artificial intelligence (AI) techniques, trying
to face these limitations.The basic idea of the game is that the user
guides a character through a maze to reach a goal point, running
from enemies who, endowed with some AI methods, will follow
paths to the player’s position or to the point goal, in order to arrive
before the user or catch him. In this context, some AI techniques
that we can use are pathfinding methods, among them breadth-first
search, depth-first search, uniform cost (ordered) search, greedy
search and A star (A*) search.

Mobile devices usually have limited processing power and mem-
ory. When developing for this type of device, the developer should
be aware of these limitations. On the other hand, develop an ap-
plication that uses AI techniques can require a lot of memory and
machine processing, depending on the treaty issue. Therefore, to
develop a game using such techniques is necessary to establish a

∗e-mail: pvfreitas@ice.ufjf.br

balance between limiting the mobile device, the complexity of the
technique to be implemented and the user enjoyment. That is, the
game developed may not require much AI processing, to be able to
play against the user, and should also bring some entertainment to
the player. In this sense, this work raises the question: is it possible
to develop an intelligent game that is executable on a mobile device
which has considerable difficulty and that is funny for the player?

Video games make up a solid market, and it is not different on
mobile devices. Every day there are new games for these devices,
of different styles. Moreover, a special attention is given in the
artificial intelligence field, including techniques applied in games.
There is a public that enjoys cooperative and competitive games,
where there is one or more opponents to play against or in groups.
In this context, it is reasonable to develop a game with some AI
techniques, able to play against a player, and it is more interesting
implement this idea on a mobile device, given its market size, and
also given the challenges that arise when trying to apply AI tech-
niques in such device. Creating this game can prove that it is possi-
ble for a mobile device entertain its users with games that can carry
intelligence to assume the role of the opponent. Furthermore, it is
very useful to obtain performance results of mobile devices when
we use AI techniques, considering the response time, the memory
usage, and other factors related to the device performance.

The main goal of this work is to implement and evaluate
pathfinding algorithms in a game for Android. Thus, we can enu-
merate the following subgoals: implement pathfinding algorithms
in a generic way for any graph; implement a game where an agent
can follow a route implemented by a pathfinding algorithm; ad-
just some parameters (map size, number of AI agents etc.) in or-
der to obtain a fluid game; evaluate the game performance and its
pathfinding algorithms in a mobile device, comparing the results in
different scenarios.

The remainder of this paper is organized as follows. Section 2
gives an introduction to Android and a summary of how to develop
to this operating system (OS). Then, section 3 shows the pathfind-
ing methods, since theirs basic structure to the particularities of
each method used in this work. After, section 4 presents the im-
plementation details of the game, including the class modeling, the
search methods implementation, the code structure, the graph con-
struction, the map editing etc. In section 5 we have the experiments
and their results. Finally, in section 6, we present some conclusions
of the work and some suggestions for further works.

2 ANDROID

Android is an OS for mobile devices, open source, based on Linux
kernel. Its development has been started by Android Inc., which
was acquired by Google in 2005 [6]. In 2007, Android become de-
veloped and maintained by Open Handset Alliance (OHA), which
is an alliance of 84 companies and led by Google [7]. Nowadays
it is the most used OS in mobile devices. In the second quarter of
2015 it held 82.8% of the mobile market [5].

Android applications are mostly developed in Java, one of the
most used programming languages in the world. Moreover, it is
free, and open source. It is object-oriented and has a wide avail-
ability of libraries that help implementation. Other languages may
also be used to program Android, such as C or C++, using a set of
tools called NDK (Native Developer’s Kit) [1]. Compiling an appli-

cation for Android generates an APK package, and it is considered
an Android application.

Google provides an official tool to develop for Android, called
Android Studio, where we can program natively in Java [2]. There
is a great community to support programming for Android, and
Google provides an extensive material containing examples, step-
by-step and others to support the creation of applications [4].

Firstly, to program for Android, the developer must choose
which will be the minimum API (Application Programming Inter-
face) level, or, in other words, the minimum Android version com-
patible to the app. The API may differ from each other, with respect
to the support methods and Android libraries. To develop the pro-
posed game and test the search algorithms, we chose the 4.1 ver-
sion, since it is present in devices that exhibit good configuration,
and moreover, the latest versions are capable to run an application
of that version. Nowadays, 4.1 or higher versions are present in
95.7% of Android devices [3].

Secondly, for programming we chose the Java language because
it is natively supported by Android Studio and has the necessary
and sufficient resources for the development. Moreover, the game
does not use advanced rendering functions that require an optimized
language. The chosen API provides the necessary resources to run
application with a good performance. When a Java code is com-
piled for the chosen API, it is converted to a bytecode that runs by
the Dalvik virtual machine, which is especially built for Android,
rather than Java virtual machine supplied by Oracle [6].

3 PATHFINDING TECHNIQUES

The purpose of using pathfinding techniques is to find a path be-
tween the starting point and the goal point on a map, maze or graph
for example. Some of these techniques generate states exhaus-
tively, covering all possible paths until find a solution, and others
use heuristics or evaluation functions that guide the search, in or-
der to find the solution more quickly and reduce the consumption
of computing resources, generating less states, without losing the
solution quality compared to exhaustive methods.

3.1 Structure of a pathfinding algorithm

A pathfinding algorithm uses a tree as the main structure. The
search is performed during the tree construction, and the addition
and expansion of its nodes follow a criterion established by the al-
gorithm. Each tree node represents a state of the search and has
the information of what was the parent node who generated it, the
action applied to create it, and the path cost from the initial node
(root) to it [8].

The edges that connect the nodes can have a value of local cost,
which is the transition cost between the nodes connected by the
edge. Usually this local cost is associated with the action that cre-
ated such edge.

In addition to the tree structure, there is usually the use of two
lists: the list of open nodes, that contains the generated nodes that
have not been visited yet, and the list of closed nodes, that contains
the expanded nodes, which have already been visited by the search.
These lists can be consulted during the search to avoid the genera-
tion of repeated nodes, avoiding cycles (loops). Beside that, the list
of closed nodes is used to retrieve the path found by the search if
necessary. The order of expanding and inserting nodes in such lists
may vary according to the pathfinding algorithm used.

When a node is selected for expansion, all reachable nodes from
it are generated and inserted into the list of open nodes, and the
expanded node is then inserted into the list of closed nodes and
removed from the open list. In the proposed game the insertion of
an expanded node in the closed list is carried with the information
of who is your parent, so we can retrieve the path obtained by the
algorithm when it found a state that is the goal point.

3.2 Uninformed methods
When the pathfinding algorithm is an exhaustive method, it is clas-
sified as uninformed method [8]. The solution is obtained by the ex-
haustive expansion of the nodes. That is, given a node, the method
will generate all the next possible nodes, and the next node to be
expanded will be selected according to the order in which it was
generated, not considering any information of the problem domain.
The visit and the expansion of the nodes are performed systemat-
ically through a graph. These methods are also known as weak
methods. We implemented three uninformed methods: breadth-
first, depth-first, and ordered searches.

The breadth-first search generates and expands nodes laterally in
the tree. Thus, the tree is generated from level to level. That is,
all the nodes of a level d are expanded before any node of the level
d+1. The criterion for selecting a node to expand is to select the
one that is the most time on the list of open nodes, that is, this list
has the behavior of a queue. The next node to be expanded will be
one on the same level of the newly expanded, or the first generated
at the next level when there are no more nodes on the same level.

The depth-first search expands and generates vertically states,
firstly performing the search to the ‘deepest’ node on the tree, then
the next deepest, and so on. Given a node at a level d, all of the
deeper nodes are visited and expanded before returning to the parent
at the level d-1. To expand a node is selected from the open list
one that is less time on the list, so the list has the behavior of a
stack. In certain cases, it is not guaranteed that the method stops
generating nodes. Depending on the problem the algorithm could
generate nodes infinitely while there are computational resources.
When this kind of problem can occur we can use an extension of the
depth-first search, where the depth of the search tree is limited, i.e.
the method generates nodes up to a given depth, and if a solution
is not found the maximum depth is incremented and the process
is repeated. This also allows to establish a maximum size for the
path, since the tree depth indicates the size of the found path. In
the case of our game there is no need to limit the depth, because, as
shown in section 4.5, the application checks if it is not generating
repeated states by consulting the open and closed lists, and there is
no possibility of generating states infinitely, as the maze shows a
limited number of nodes.

In the case of breadth-first and depth-first searches, a sequence of
actions that will have priority to expand the nodes must be defined.
For our game, we decided that the methods should try to go first to
the north, west, south and then east.

Finally, the ordered search (also known as uniform-cost search)
expands nodes selecting the one that has the lowest accumulated
cost on the open list. This cost is the sum of the local costs of
each edge on the path taken since the root to the current state. It is
usually used in graphs that have costs on their edges (or weighted
graphs). This method is not considered an informed method (see
section 3.3) because it does not use data relating to the state as
an expansion criterion, but only the path cost from the root to the
state. Using this criterion, the ordered search can find the shortest
path, i.e., the path with the lowest possible cost on its edges, not the
path with the least number of edges as the breadth-first search. In
the case of the developed game, the transition cost of the states is
constant (as shown in section 4). Therefore, this search has a similar
behavior to the breadth-first search, since the cost of a node is equal
to its depth on the search tree, doing the method select a node for
expansion on the lowest level of the search tree, as the breadth-first
search. Nevertheless, for a comparison purpose, the ordered search
was also implemented for the proposed game.

3.3 Informed methods
When a search uses some heuristic function, it is considered an
informed search [8], where the selection of a node to expand con-
siders an evaluation function, denoted by f (n), which is the main

factor that defines the method, where n is the current node. An in-
formed method uses inherent information of the current instance of
the problem and its states, in order to select those nodes that are
more promising to reach the result faster.

An evaluation function can be defined in various ways, espe-
cially using cost information, which is usually denoted by g(n),
and heuristic functions, which is denoted by h(n). As seen before
on the ordered search, the cost is the value assigned to the transition
from one state to another (the cost of the edge).

A heuristic function tries to predict an approximate value of the
real cost from the current state to the goal. The heuristic used in the
game of this work is the Manhattan distance, where are considered
the current state and the destination point. The heuristic is obtained
directly from the coordinates of the points on the Euclidean space.
Considering a 2D space where the points are positioned with coor-
dinates X and Y , and considering the current state P1 = (x1,y1), and
the destination point P2 = (x2,y2), the Manhattan distance of these
two points is given by:

hmanhattan(P1,P2) = |x1− x2|+ |y1− y2| (1)

This heuristic is interesting when the problem works with a pat-
tern of coordinates, where they are discretized, as on a matrix for
example. The calculation is simple and can be done quickly.

The heuristic is admissible, since it never overestimates the real
cost to reach the goal, i.e. it always estimates a lower or equal cost
than the real cost. As in our game there is movement restrictions
in the north, south, east and west coordinated poles, with no move-
ments in diagonal, the minimum size of the path to be followed is
calculated by this heuristic.

The heuristic is also consistent (or monotonic), since for each
node n and each successor n′ generated from n with an action a, the
estimated cost h(n) to achieve the goal from n is not greater than
the cost of going from n to n′ plus the estimated cost h(n′), that is:

h(n)≤ c(n,a,n′)+h(n′) (2)

This definition is a generalization of a triangle inequality, which
says that each side of a triangle cannot be greater than the sum of
the other two sides. Here, the vertices of this triangle are the nodes
n, n′, and the goal.

We implemented the informed methods greedy search and the A
star (or A*) search. In both searches, we select to expand the node
with the lowest evaluation function on the list of open nodes, inde-
pendently of its depth on the search tree. The evaluation function
of the greedy search considers only the heuristic function and the
A* search has the evaluation function defined as the sum of the cost
and the heuristic values, as follows:

fgreedy(n) = h(n) (3)
fA∗(n) = g(n)+h(n) (4)

In the proposed game, where the cost is uniform, the A* evalu-
ation function always has a constant value during the search when
it generates states that approach the goal, because given a node n1
with an heuristic value h1 and cost g1, walking a step to an adjacent
node n2 approaching the goal, the heuristic value h2 is h1 subtracted
from one, but the cost will be increased by one. That is, with can-
cellations of constants, the evaluation function of n2 is equal to n1,
thus:

fA∗(n2) = g(n2)+h(n2) = g(n1)+1+h(n1)−1 = fA∗(n1) (5)

That is, we must define the algorithm’s behavior in case of a tie
when choosing a node to expand. We chose arbitrarily select to ex-
pand that node that is less time on the open list. On the other hand,
when A* generates a node that is getting away from the player, the

cost and heuristics values are both incremented by one, i.e. the gen-
erated node has an evaluation higher than its parent. So this node
will only be selected to expand if there is no path through the other
nodes with lesser value.

4 THE GAME

In this section we describe the modeling and implementation of the
game and the pathfinding techniques.

4.1 Class modeling
The Figure 1 shows the class diagram projected for our game.
As the main map representation we have the Board class, which
stores the graph, the enemies and the player positions, the matrix to
draw the map (maze), and the game states: victory (PLAYERWIN),
defeat (GAMEOVER), game resuming (RESUME) and map con-
struction (BUILDING BOARD). This class is responsible for run
the pathfinding algorithms for each enemy according to the user’s
movements, and also provides methods to help the map editing.

The matrix (grid) is populated with predefined values of barrier
(BARRIER), empty space (EMPTY) and the objective position of
the player (GOAL). From this matrix the graph with its adjacency
list is populated, as we show in section 4.3.

An instance of Board maintains an enemy list populated dynam-
ically at runtime. Each enemy has an instance of the Search class,
which keeps stored its origin point of the search (start), its objec-
tive point (end), its pathfinding method (searchType) and its graph
under which the search is performed. The origin point is a direct
reference to the enemy point, i.e., the enemy movement is mirrored
with this point. The same happens with the destination point: as the
goal of the enemy is to get in the player’s position, an user move-
ment directly updates the end point. Thus, the project maintenance
is facilitated, allowing the use of the pathfinding algorithms in dif-
ferent ways: the end point could be another convenient point in the
map, as the goal point or other item that in future may be imple-
mented, for example. In addition, an instance of Search keeps a list
of points (path) indicating what was the path found by the search at
the last run of the algorithm.

The Enemy and Player classes were implemented as inheritances
of the Entity class, allowing the generalization of these objects for
use of the searches.

The graph is represented by the Graph class with an adjacency
list, and keeps in a separate instance the player objective point
(GOAL). As a representation of a graph node we have the GraphN-
ode class, which indicates the point node, its type (empty space or
player goal), and its respective adjacency list. We cannot perform
the search only with this class, since there is no storage for the cost
and heuristic values used in some methods. For this, we have cre-
ated the SearchNode anonymous class belonging to Search and as
an inheritance of GraphNode. This class keeps the node cost, its
evaluating value, and who is its parent node (dad).

4.2 Code structure
The classes in the project were divided in three packages: data
structure (br.edu.ufjf.core), artificial intelligence (br.edu.ufjf.ai),
and main game execution (br.edu.ufjf.main), which includes activi-
ties and visions of Android. In core package are the Board, Entity,
Enemy, Player, Graph and GraphNode classes, whose details were
discussed in section 4.1. In ai package we have the Search class,
which is responsible for the pathfinding algorithms. Then, in main
package, are the following classes:

• Game: activity that controls and displays the screen where the
user can play;

• GameView: class that inherits from the View Android class,
and implements the draw functions for play, and also handle
the touchscreen events;

Figure 1: Class diagram

• GameEditor: activity that displays the screen for map editing;

• GameEditorView: this view has a similar behavior to the
GameView class, but its functions are geared for map editing
and not to play;

• GameInstanceManager: this class provides static methods
that allow save and load map files, and it allows the crossing
of Board instances between the Android activities;

• Menu: activity that displays the main game menu;

• NewMap: activity that displays options for set the width and
height to create a new blank maze;

• Splash: the initial screen of the game which is displayed for
three seconds before the main menu.

4.3 Graph building
When the map is changed, the graph is rebuilt by the rebuildGraph()
function, of the Graph class. To facilitate the nodes retrieve in the
graph, since the map is represented by a matrix, the nodes are also
stored in a matrix too, called nodes, where given a position of the
map the corresponding node is retrieved from nodes using the same
coordinates. This matrix keeps objects of GraphNode type.

Firstly, the rebuildGraph() function passes through the grid of
Board. Each position in grid generates a graph node in nodes, with
their coordinates and type (barrier, blank space or player goal). Af-
ter fill the nodes matrix, the adjacency lists are populated, thus com-
pleting the graph representation. The pathfinding algorithms use
the adjacency lists to know what are the next possible states from a
given node. In other words, these lists indicate what are the possible
moves from a given position. It is possible up to four movements:
north, south, east and west. In terms of coordinates x and y, these
possible movements are (x-1, y), (x+1, y), (x, y-1), and (x, y+1).

4.4 Storage of the mazes
The storage for the mazes is made using serialization in file, where
an entire object in memory is saved in a file directly [6]. We have
reserved ten files (slots) to store the maps. The GameInstanceMan-
ager class handles these files. To store the mazes in file we have im-
plemented two anonymous classes: Instance and EnemyInstance.
These classes convert the lists in static sized vectors, since the se-
rialization on Android do not allows the storage of lists. Thus, the
saved files are from Instance type. When reading one of these files,
its information are mapped back to a Board instance.

4.5 Implementation of the pathfinding methods
The execution of the pathfinding functions is a responsibility of the
Search class. The pathfinding methods implemented in this class
are breadth-first (breadth first), depth-first (depth first), ordered,
greedy (greedy), and A* (a star) searches. The general function-
ing of these methods was discussed in section 3. We show the Java
code for a generic search on the following listing, and further we
show the specifics of each search.

1 p r i v a t e vo id generic_search(){
2 List<GraphNode> adjacency;
3 List<SearchNode> openList = new ArrayList<>();
4 List<SearchNode> closedList = new ArrayList<>();
5 SearchNode dadNode = new SearchNode(graph.

getNode(start));
6 SearchNode sonNode;
7 openList.add(dadNode);
8 whi le(!openList.isEmpty()&&!reachedObjective()){
9 openList.remove(dadNode);

10 closedList.add(dadNode);
11 adjacency = dadNode.adjacency;
12 f o r(GraphNode adjNode : adjacency) {
13 sonNode = new SearchNode(adjNode);
14 sonNode.dad = dadNode;
15 evaluateNode(sonNode);
16 boolean contains = f a l s e;
17 i f (!openList.contains(sonNode) &&
18 !closedList.contains(sonNode)) {
19 openList.add(sonNode);
20 }
21 }
22 dadNode = selectNextNode(openList);
23 }
24 buildPath(dadNode);
25 }

In this code, the list of open nodes is the openList object, and the
list of closed nodes is the closedList object. While the open list is
not empty (otherwise the search would not have found a path) or the
current state of the loop does not match the position of the objective
point (calculated by the reachedObjective() function), the function
continues to expand states, inserting they into the closed list and
inserting the new generated nodes into the open list. But, before the
insertion of the generated nodes, the function verifies if they have
not already been created by consulting the lists (between the lines
17 and 20). This step is important to prevent the search from loop.
In this code the state that is being expanded is the dadNode ob-
ject, and the new generated node is the sonNode. At the end of the
search, the buildPath() function is called to retrieve the calculated

path. It receives as parameter the last selected node for expansion,
which corresponds to the objective point if a path has been found.
From this node, this function retrieves the path using the parent
node of each node, thus the path construction is made from the end
to the beginning. The code of buildPath() is listed following:

1 p r i v a t e vo id buildPath(SearchNode endOfPath){
2 path.clear();
3 i f (reachedObjective()) {
4 SearchNode answer = endOfPath;
5 whi le(answer.dad.point.x != start.x ||
6 answer.dad.point.y != start.y) {
7 path.addFirst(answer.point);
8 answer = answer.dad;
9 }

10 path.addFirst(answer.point);
11 }
12 }

Given a node of the path, it is inserted in path, then its parent
node is selected, and so on. The while loop is only interrupted
when the parent of the current node is equal to the starting point,
indicating that the path was completely recovered.

The implemented pathfinding methods differ at two points in the
generic search code: at node evaluation (line 11) and at node selec-
tion (line 22). On breadth-first and depth-first searches, the evalua-
tion function have no effect. The difference between these methods
is on the selection function: on the breadth-first search, we select
the first node on the list of open nodes, and on the depth-first search
we select the last one. The new generated nodes are always inserted
at the end of the open list. Thus, in breadth-first search this list is
a queue and in depth-first search this list is a stack. Thus, the tech-
niques fill the search tree as described in section 3.2.

On the ordered, greedy and A* searches, a new generated node
is evaluated by the evaluateNode() function. On the ordered search,
this evaluation is the sum of the local costs of each edge on the path
taken from the root to the point of the current state, as shown on the
following code:

1 //evaluation of the ordered search
2 p r i v a t e vo id evaluateNode(SearchNode sonNode){
3 sonNode.cost=dadNode.cost+Graph.TRANSITION_COST;
4 sonNode.evaluation = sonNode.cost;
5 }

Since the cost is uniform, we have that the transition cost
(TRANSITION COST) is one. The evaluation of a new node is
the sum of its parent cost and the transition cost.

On greedy search this evaluation is only the heuristic value of
the node, as implemented on the following code:

1 //evaluation of the greedy search
2 p r i v a t e vo id evaluateNode(SearchNode sonNode){
3 sonNode.evaluation=heuristic(sonNode.point,end);
4 }

Finally, on A* search the node evaluation is the sum of the
heuristic value and the accumulated cost, as shown on the following
code:

1 //evaluation of the A* search
2 p r i v a t e vo id evaluateNode(SearchNode sonNode){
3 sonNode.cost=dadNode.cost+Graph.TRANSITION_COST;
4 sonNode.evaluation=heuristic(sonNode.point, end)

+ sonNode.cost;
5 openList.add(sonNode);
6 }

The heuristic function is a direct implementation of the Manhat-
tan distance as defined in equation 1. The code of this function is:

1 p r i v a t e s t a t i c i n t heuristic(Point p1, Point p2){
2 re turn Math.abs(p2.x-p1.x) + Math.abs(p2.y-p1.y);
3 }

The node selection step is the same for the ordered, greedy and
A* searches: they select the node with the lowest evaluation on the
open list.

5 EXPERIMENTS AND RESULTS

5.1 The test mazes
For test the game and the pathfinding algorithms, we have created
three mazes, storing them in files. In these mazes the enemies were
arranged on the bottom right corner of the mazes, and the player
was placed on the top left. Each enemy was colored with a differ-
ent color: red for breadth-first search, blue for depth-first search,
pink for ordered search, grey for greedy search and black for A*
search. The player is the green point. The Figure 2 shows the test
mazes, and the Figure 3 shows the disposition of the player and of
the enemies with the indication of each pathfinding method. The
first maze has 30 units wide and 40 units high and has no barri-
ers, thus its graph has 1200 nodes. That is, a pathfinding algorithm
can generate 1200 states. This maze was created with the purpose
of showing the general functioning of each algorithm on an open
maze (without barriers). Each player movement implies on a new
execution of each search algorithm to find a new path for each en-
emy. It is interesting to note that this maze has many optimal paths,
so that some optimal methods found different paths.

It can be observed that the greedy and A* searches calculated the
same path. The depth-first search gave a lot of laps to find a solu-
tion, as shown on Table 1. The breadth-first and ordered searches
calculated different paths, although they found paths with the low-
est possible cost as A* does. The ordered search tended to follow a
diagonal path, given the way it select nodes to expand by choosing
one with the lesser accumulated cost, and the breadth-first search
followed paths with fewer curves, given its node selection that fol-
lows the order of precedence of the actions (north, west, south and
east). The Greedy and A* searches displayed paths with fewer
curves too, but they followed another direction due to the use of
heuristics to expand nodes.

The second maze has 20 units wide and 30 units high. This maze
was generated randomly and allows to show the behaviour of the
pathfinding algorithms in a map with barriers. The player tried to
reach the goal, indicated by the yellow square, but some enemies
reached the player before.

We observed a similar behaviour of the algorithms in both mazes
1 and 2: the depth-first search calculated long paths, taking many
laps. The A* and ordered searches always calculated the same path,
and the greedy search followed different paths.

Lastly, the third maze was made with greater dimensions: 40
units wide and 50 units high. This maze was also generated ran-
domly. In this case, the player reached the goal.

5.2 Results
We grouped the execution results of the pathfinding algorithms in
the Tables 1 and 2. We collected the number of generated (Gen.)
and expanded (Exp.) states, the size of found path (Size), and the
runtime (Time) in milliseconds for each pathfinding algorithm. We
show in Table 1 these numbers for each player movement in the first
maze, and then the sum of these values for all 3 mazes in Table 2.
The tests was executed in a Sony E1 Dual with 512 MB RAM and
1.2 GHz Dual-Core processor.

In the first maze the player has done 34 movements in total. In
general we observed that the uninformed methods (breadth-first,
depth-first and ordered searches) generated and expanded much
more states than the informed methods (greedy and A* searches).

Figure 2: The test mazes. The smaller points indicate the path calculated for each enemy after the first movement of the player. The player
begins on the upper left corner and the enemies on the bottom right corner. The first map has 30 units wide and 40 units high, the second map
has 20 units wide and 30 units high and the third one has 40 units wide and 50 units high.

Breadth-first Depth-first

OrderedGreedy
A*

Player Goal

Figure 3: Identification of the game elements: player, goal and the
enemies with their pathfinding methods.

The difference of runtimes was also large: the uniformed meth-
ods took much longer to respond. The depth-first search deserves
a highlight for its abrupt change between the movements of the
player: in some cases, this search has generated all possible states,
in other cases it generated fewer states than the breadth-first search
and took less time, but never found a shortest path and the path
sizes varied widely. Moreover, in general, the sums of its values
were very high. These variations can be observed at the game run-
time: the path indicated by the depth-first search varies all the time.
This indicates how bad the depth-first search can be for a pathfind-
ing problem.

Although we said that A*, greedy, ordered and breadth-first
searches always found the shortest path, note that the table shows
different path sizes to the same movement of such searches. This
is because, as these searches followed different paths, at times a
player movement favored an enemy to approach it and detracted
another to get away, which does not change the fact that these al-
gorithms find the shortest path considering the state of the game in
every move, where the enemies are at different positions.

In the second maze the player has done 29 movements. In this

maze the depth-first search showed much variation between each
movement as in the first maze, despite their summations have not
been larger. The breadth-first search also encountered paths with
the lowest cost, but presented runtimes and high numbers of gener-
ated and expanded states. The same has occurred with the ordered
search. In general, the greedy search presented the lowest times,
but for this maze it does not found the shortest path, despite using
heuristics. This occurs because it follows a path attempting to ap-
proach the player but ignoring the path cost, i.e., it can approach the
player but follow a large path, as it only uses the heuristic function,
as shown in equation 4. The A* search presented good values: the
number of expanded and generated states and the runtime were not
so high, and the path had the lowest possible cost, as expected.

In the third maze the player has done many movements (97 in
total). In this maze the pathfinding algorithms showed similar be-
haviors to the other mazes, but the difference in results was higher
due to the larger size of the map.

These results show that the uninformed methods did not perform
well, which makes them strong candidates to be dropped from a fi-
nal version of the game. The informed methods have better results,
both in generating and expanding the states and in runtimes. How-
ever, the greedy search does not always find the shortest path, while
responds slightly faster than the A* search. That is, the use of these
two methods is interesting, and the greedy search can be used when
we want a faster response and without concern for its quality, since
this search is not optimal, and the A* can be used when we want to
get the shortest path with a good runtime.

6 CONCLUSION

This paper presented a study of the application of pathfinding tech-
niques in developing an Android game. As the results show, tech-
niques that use heuristics are the most recommended, since they
have better performance compared to other searches, which is al-

Table 1: Results of the execution of the pathfinding algorithms for the first maze. For each algorithm we show the number of generated (Gen.)
and expanded (Exp.) states, the size of the found path (Size), and the runtime (Time) in milliseconds. We show these numbers for each player
movement (Mov.).

Breadth-first Depth-first Ordered Greedy A*

Mov. Gen. Exp. Size Time Gen. Exp. Size Time Gen. Exp. Size Time Gen. Exp. Size Time Gen. Exp. Size Time

1 1199 1198 66 2565 133 67 66 51 1200 1198 66 2113 172 67 66 31 172 67 66 29
2 1198 1196 64 2102 1200 1134 66 3094 1198 1195 64 1921 168 65 64 16 168 65 64 20
3 1195 1192 62 2017 1200 1136 64 3033 1196 1192 62 2059 164 63 62 17 164 63 62 16
4 1192 1188 60 2059 282 143 142 87 1192 1187 60 2010 159 61 60 13 159 61 60 13
5 1187 1182 58 2190 281 143 142 45 1188 1182 58 2187 155 59 58 13 155 59 58 14
6 1182 1176 56 1995 1200 1064 140 2837 1182 1175 56 2138 150 57 56 13 150 57 56 26
7 1175 1168 54 2104 280 143 142 46 1176 1168 54 2070 146 55 54 12 146 55 54 12
8 1168 1160 52 2242 280 143 142 49 1168 1159 52 2023 141 53 52 10 141 53 52 11
9 1159 1150 50 2022 1200 1064 142 2940 1160 1150 50 1944 137 51 50 17 137 51 50 12

10 1150 1140 48 1923 1200 1064 142 2861 1150 1139 48 1893 132 49 48 9 132 49 48 10
11 1139 1128 46 1790 414 211 210 141 1140 1128 46 1926 128 47 46 8 128 47 46 9
12 1128 1116 44 1902 410 209 208 127 1128 1115 44 2078 123 45 44 49 123 45 44 9
13 1115 1102 42 1838 1200 1000 208 2644 1116 1102 42 1890 119 43 42 20 119 43 42 19
14 1101 1085 40 1795 1200 1002 206 2467 1102 1087 40 1757 114 41 40 6 114 41 40 8
15 1077 1057 38 1744 424 217 216 114 1088 1072 38 1683 110 39 38 7 110 39 38 10
16 1044 1020 36 1518 424 217 216 124 1069 1049 36 1835 105 37 36 6 105 37 36 7
17 1000 972 34 1999 1200 994 216 2793 1050 1028 34 1828 101 35 34 6 101 35 34 5
18 947 915 32 1269 1200 994 216 2453 1017 991 32 1496 96 33 32 32 96 33 32 6
19 883 847 30 1064 542 277 276 211 992 964 30 1406 92 31 30 5 92 31 30 4
20 810 771 28 971 538 275 274 235 945 913 28 1379 88 29 28 5 88 29 28 7
21 730 691 26 814 1200 938 274 2230 911 874 26 1158 88 29 28 16 88 29 28 17
22 649 610 24 638 1200 940 272 2204 847 805 24 1004 83 27 26 4 83 27 26 3
23 565 526 22 615 568 291 290 336 795 749 22 1153 82 27 26 5 82 27 26 3
24 481 444 20 328 568 291 290 246 714 666 20 675 77 25 24 9 77 25 24 4
25 402 368 18 224 1200 924 290 2343 646 596 18 699 76 25 24 3 76 25 24 3
26 331 300 16 160 1200 924 290 2313 547 496 16 406 71 23 22 3 71 23 22 3
27 266 238 14 99 670 343 342 390 467 418 14 303 70 23 22 10 70 23 22 9
28 296 266 14 167 666 341 340 364 371 326 12 176 65 21 20 3 65 21 20 2
29 261 230 12 105 1200 876 340 2024 294 251 10 105 64 21 20 2 64 21 20 3
30 284 251 12 102 1200 878 338 2061 210 171 8 84 59 19 18 2 59 19 18 2
31 235 203 10 68 712 365 364 383 139 107 6 22 58 19 18 2 58 19 18 2
32 250 216 10 81 712 365 364 380 79 55 4 7 53 17 16 3 53 17 16 2
33 192 160 8 60 1200 854 364 1998 39 23 2 2 52 17 16 2 52 17 16 2
34 199 165 8 61 1200 854 364 2202 10 3 0 0 47 15 14 1 47 15 14 2

Table 2: Summations of the execution data of the pathfinding algorithms for each maze. For each algorithm we show the number of generated
(Gen.) and expanded (Exp.) states, the size of the found path (Size), and the runtime (Time) in milliseconds.

Breadth-first Depth-first Ordered Greedy A*

Maze Gen. Exp. Size Time Gen. Exp. Size Time Gen. Exp. Size Time Gen. Exp. Size Time Gen. Exp. Size Time

1 27190 26431 1154 40631 28304 20681 7956 45826 28526 27734 1122 43430 3545 1268 1234 360 3545 1268 1234 314
2 6334 6139 692 1971 3381 2996 1670 1056 6048 5840 670 1959 2138 1972 1458 266 2865 2552 670 635
3 46406 44835 4520 19152 37663 35050 24326 14073 46809 45138 4520 17079 13550 12249 7534 1760 12496 11347 4520 1327

ready expected according to the literature. In the case of the greedy
search, despite using a heuristic function, it did not always calcu-
late the shortest path, but had the lowest runtimes. The A* search
always calculated the shortest path, and its runtimes were not much
larger than the runtimes of the greedy search.

When compared to the uninformed methods (especially the
depth-first search), the greedy and A* searches performed better.
A game needs to be fluid, quick to respond to external stimuli
(player’s actions), and must also present a challenge that make it
interesting, without being impossible to beat. So, even if we are
seeking for a search method with the best possible performance, it
may not be so effective as to render impossible the user’s victory.
Thus, depending on the situation, the greedy search can be more
interesting, since it has low response time and does not always cal-

culate the best path, which would give an advantage to the player.
The type of the proposed game requires almost an immediate

response of the pathfinding algorithm, given the rapid dynamic of
switching between a player movement and the enemies movements.
It would not be interesting if the game had to stop its execution to
calculate the movements, otherwise the whole dynamic would be
broken. As shown in the results, some algorithms have answered
only after two seconds, which, in this context, is a high time. It is
better to give preference to algorithms that respond more quickly.

6.1 Future works

This game features an mechanics of alternation between plays,
which requires a fast response time of the used pathfinding method.
However, we propose another dynamic where the movements of

the enemies are calculated regardless of the player’s movement, ac-
cording to some time interval. That is, the enemies will move all the
time and it would require for the player to have a quick wit to trace
a route to escape from them. In this case, the difficulty would be
set by the time interval between the path calculations and the ene-
mies speed. If the pathfinding function does not respond in time, an
enemy could continue following a path previously calculated until
a new one is obtained. In this context, it would be necessary the
implementation of threads, thus bringing the concepts of parallel
execution. Issues like synchronization of functions would have to
be observed.

Another proposal is a maze in constant motion like a side-
scrolling game. The maze would be generated randomly all the
time, and the player would have to run away from enemies that are
chasing it. These enemies would be always choosing the shortest
path to the player, forcing it to choose the shortest path as well. If
the player follows a larger path, the enemies would approach it, un-
til one of them catches the player. In this game mode, it would not
have a goal point. Instead, the goal would be just to break records:
at each time, the player would try to go further. Nowadays many
games use ranking mechanic, often synchronizing the players data
on the cloud, in order to create a competition between them.

As shown, depending on the map and the positions of the entities,
there may be multiple optimal paths. The pathfinding methods have
been implemented in order to use the first optimal path found (in
the case of optimal methods). However, it may be interesting to
allow these methods to find all the optimal paths and then use some
function to estimate where the player will follow to choose among
the optimal paths which is closest to it. From this, we can also
program the enemies to work together to try to hinder the player to
follow different paths.

Finally, we also propose the inclusion of items in the game,
which can be used by both the player and the enemies, making the
pathfinding methods have new information to work: when choosing
an item or not . This would require a new layer of artificial intel-
ligence, which would work with probabilities, making the game
more dynamic and making enemies have closer to a human player
behavior. Examples of items are:

• Mobile barriers: blocks that can be moved, changing the map
and requiring the graph update;

• Speed items: in cases that the game has constant movements
of the enemies, it could have items that change the speeds of
the player or of the enemies;

• Portals: items that allow the transport of an entity from a point
to another instantly;

• Lives: the player could have a number of lives, thus, when it
was hit by an enemy, it would lose a life instead of lose the
entire game, while it has lives;

• Immunity: temporary effect that allows the player be hit by
an enemy without anything happening.

The development of other elements, as a collaborative online
mode between mobile devices (via Bluetooth or network wireless
for example) and the sharing of custom mazes by cloud, is also en-
couraged.

ACKNOWLEDGMENTS

The authors would like to thank Universidade Federal de Juiz de
Fora for the financial support, through scientific initiation scholar-
ships (BIC/UFJF).

REFERENCES

[1] Google. Android ndk. Available at:
http://developer.android.com/intl/pt-br/tools/sdk/ndk/index.html,
2016. Accessed February, 2016.

[2] Google. Como baixar o android studio e o sdk tools. Available at:
http://developer.android.com/intl/pt-br/sdk/index.html, 2016. Accessed
February, 2016.

[3] Google. Dashboards. Available at:
http://developer.android.com/intl/pt-br/about/dashboards/index.html,
2016. Accessed June, 2016.

[4] Google. Develop apps. Available at:
http://developer.android.com/intl/pt-br/develop/index.html, 2016c.
Accessed February, 2016.

[5] IDC. Idc: Smartphone os market share 2015, 2014, 2013 and
2012. Available at: http://www.idc.com/prodserv/smartphone-os-
market-share.jsp, 2016. Accessed June, 2016.

[6] Z. Mednieks, L. Dornin, G. B. Meike, and M. Nakamura. Programando
o Android. Novatec Editora Ltda., 2012.

[7] OHA. Overview. Available at:
http://www.openhandsetalliance.com/android overview.html, 2016.
Accessed February, 2016.

[8] S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach.
Pearson, 3 edition, 2009.

