

A similarity-based approach to match elements
across versions of XML documents

Fernando Campello1, Bruno Pinto1, Gabriel Tessarolli1, Alessandreia Oliveira1,2,
Carlos Oliveira2, Marcio Oliveira Junior2, Leonardo Murta1, Vanessa Braganholo1

1Universidade Federal Fluminense
2Universidade Federal de Juiz de Fora

{fernandocampello, brunoferreirapinto}@id.uff.br,
{carlosroberto, mtojunior}@ice.ufjf.br,

{alessandreia, gtessarolli, leomurta, vanessa}@ic.uff.br

Abstract. XML documents are often used to provide inter-system interopera-
bility. A related problem is that XML documents evolve over time, so identify-
ing and understanding the changes they undergo become crucial. Some diff
approaches based on syntactic and semantic analysis of the documents have
been developed to address this problem. The strategy is to find data fragments
that are identical in both versions of an XML document and match the corre-
sponding elements through the use of context keys. However, depending on
how XML documents are managed, there is no guarantee that the values of
these keys remain the same across versions. Thus, differently from existing
approaches, this paper proposes the use of similarity to match corresponding
elements across XML versions, rather than key equality. It also shows how this
can be applied to support both syntactic and semantic XML diff applications.

1. Introduction

XML is being adopted as a standard language by many industries and research
communities to provide inter-system interoperability, including healthcare [Argüello et
al. 2009; Thuy et al. 2013], legislative houses [Hallo Carrasco et al. 2013], and Web
Science [Getov 2008]. In this context, users are often not only interested in the current
value of data but also in their changes. This explains a renewed interest for managing
document evolution. It is not a trivial task, though. The challenge resides in the fact that
these documents contain a hierarchical structure and user-defined tags [Bray et al.
2008]. While allowing flexibility in data representation, this complicates the monitoring
of its evolution, especially in large data repositories. To deal with this problem, some
diff approaches specific to XML documents have been developed [Cobena et al. 2002;
Wang et al. 2003; Santos e Hara 2004]. Based on syntactic analysis, the main strategy
on these approaches is to find data fragments that are identical in both versions of the
XML document and match the corresponding elements through the use of context keys
[Buneman et al. 2003].

 Although effective, the use of context keys may not be suitable in all scenarios.
Depending on how XML documents are managed, there is no guarantee that the values
of the attributes and elements that represent these keys remain the same across versions.
For example, there may be a typing error on the key value for an element in version v1
of an XML document that is corrected in version v2 of the same document. Even if all
the remaining data in that element is kept unchanged, the approaches that rely on keys
cannot uniquely identify this element across the versions.

 In this paper we propose the use of a similarity-based approach to match
elements across versions. It overcomes the problem illustrated before, since it does not
rely on key equality to identify elements. Instead, it uses a set of characteristics of the
elements, employing different strategies according to the element type to determine the
similarity degree. According to this strategy, elements are matched if their similarity
degree is greater than a given threshold. Additionally, our matching approach aims at
obtaining a global optimum matching instead of a local optimum matching.

 Both syntactic and semantic XML diff applications can benefit from this
similarity-based matching approach. In this paper, we present Phoenix and XChange
[Oliveira et al. 2014], two applications that use our similarity-based matching approach
for both syntactic and semantic XML diff problems, respectively. Phoenix is a novel
syntactic XML diff tool that compares two XML documents, which may be two
revisions of the same document or two variants with little shared content. XChange is a
semantic XML diff tool that helps understanding the evolution of XML documents. It
was originally developed to work with a key-based matching approach, but was adapted
to work with our similarity-based approach.

 The remaining of this paper is organized as follows. Section 2 describes the
similarity matching in XML documents. Section 3 presents examples of applications
that use this similarity-based approach. Section 4 discusses related work. Finally,
Section 5 presents conclusions and suggestions for future work.

2. Similarity-based Matching in XML Documents

The basic task for every diff algorithm is to identify corresponding elements from two
documents. For instance, text-based diff basically adopt LCS [Cormen et al. 2009] algo-
rithms for this purpose, detecting the longest common subsequence of lines of text be-
tween two files. However, depending on the type of document, such task becomes trick-
ier. XML document is one of the types that brings extra complexity to the matching
task, due to its tree-based semistructured nature and flexible compositions rules.

 There are different ways to identify corresponding elements in XML documents.
Among them, we can cite context key approaches and similarity-based approaches. A
context key guarantees the uniqueness of an element throughout versions, using key
values. It assumes the key does not change, thus, the matching across documents is fair-
ly simple and relies on the equality of such key. However, this precondition may not
hold or, even worse, the elements may not have keys. A related problem is that depend-
ing on how XML documents are managed, there may be no guarantee that the value
chosen as key remains the same across different versions. For such situations, a simi-
larity-based approach fits better, since it does not rely on key attributes. Similarity-
based approaches investigate characteristics of the elements under comparison in order
to quantify how much alike they are. Thus, the comparison is no longer binary (equal or
not equal), but proportional, returning a similarity degree.

 The similarity-based approach for XML elements matching proposed by this
paper recursively evaluates the similarity between the information contained within the
structures of the XML elements and expresses it through a real value. This value ranges
from zero to one, zero representing total inequality and one representing the total equal-
ity of the elements.

 It is important to note that our similarity technique considers XML documents as
unordered trees. That is, only the ancestor-descendant relationship is significant, as op-
posed to ordered trees in which child ordering is also significant. Although ordering
amongst elements in the same level is considered in XML specification, there are sever-
al scenarios where it should not impact the use of the document. In fact, several ap-
proaches in the literature consider unordered XML trees [Chawathe e Garcia-Molina
1997; Wang et al. 2003].

 Figure 1 represents our similarity-based approach. Starting from the root ele-
ments of the documents under comparison, the similarity-based approach analyzes their
similarity based on four features: (1) element name; (2) textual content; (3) element at-
tributes; and (4) subelements. For every feature, the approach evaluates its values on
both elements under comparison and compares them to produce a similarity component
related to that feature. At the end, the similarity components are combined, resulting in
a real value that indicates the similarity degree between the elements under comparison.

Figure 1. Similarity-based approach to XML matching

 In order to calculate each similarity component, our approach uses different al-
gorithms, chosen specifically to deal with the characteristics of each component type.
These algorithms and the rationale on their use are briefly described in the following:

• Name similarity component. Since element names are strings, the Longest
Common Subsequence (LCS) algorithm [Cormen et al. 2009] is applied over
the names of the elements under comparison. The length of the resulting LCS
sequence is then divided by the average length of the two input strings. The
result indicates the similarity degree between the element names.

• Textual content similarity component. Since the textual content is also a
string, the LCS algorithm is applied once more to calculate this similarity
component. First, it identifies the LCS sequence and then divides its length
by the average length of the textual content from both elements.

• Attributes similarity component. Attributes are compared in the similarity-
based approach by the following steps:

1. Extract the complete set of attributes names used in both elements under
comparison;

2. For each identified attribute, compare its value in the first element with
its value in the second element using the LCS algorithm, as already ex-
plained, and keep the resulting similarity; if the attribute is not present in
one of the elements, this similarity is set to zero. It is worth mentioning
that we only compare values when there is a match in the attribute name,
i.e., if the name changes, we consider it a new attribute;

3. Sum all the similarities calculated in the previous step and divide by the
number of attributes in the complete set;

4. The resulting value is the attributes similarity component.

• Subelements similarity component. To calculate this component, another mul-
ti-step procedure is used:

1. Each subelement from the first element is compared to each subelement
of the second element using the same similarity calculation algorithm
(thus, characterizing recursion), and the results are registered in a matrix;

2. The all-to-all similarity matrix calculated in the previous step is then
provided to the Hungarian algorithm [Kuhn 1955], which outputs the
global optimum match amongst the subelements;

3. From this best match, the subelements similarity component is calculated
by dividing the sum of all the similarities in the match by the number of
subelements.

 All the similarity components are real numbers ranging from zero to one, where
zero means total dissimilarity in the given feature, and one means total similarity
(equality). With all the similarity components calculated, the overall similarity is calcu-
lated using a weighted average.

 The weight of each similarity component in the overall similarity calculation is
configurable, and should be carefully chosen, depending on the application using the
approach. For instance, it may be suitable in some applications to give more importance
to text content. That is the case when it is known that the documents being compared
use the same schema (thus, the same element names). There might be cases where the
application does not use one of the components (by giving it a weight of zero).

3. Similarity-based Matching Applications

Similarity algorithms for comparing XML documents are important in various applica-
tions that manipulate semistructured data. The first application that comes to mind in
this case is querying XML documents using similarity instead of exact matches [Cohen
et al. 2003; Dorneles et al. 2004; Lima et al. 2004]. In this section, however, we focus
on other types of applications, such as syntactic and semantic diff. The use of similarity
functions to evaluate comparisons in these applications has the potential of making
them more generic, as no key is necessary to be set beforehand. The remaining of this
section introduces two diff tools that used our similarity-based matching algorithm.

3.1 Phoenix

Phoenix is a diff tool that uses our similarity-based approach to identify and present the
differences between two or more XML documents. When used to compare two XML
documents, Phoenix calculates the similarities between the elements in these documents
and composes a diff document containing the resulting information. This document is
presented to the user using a tree view, where each node represents one element from
the resulting diff document. Figure 2 presents such visualization. A color scheme is ap-
plied to each node, depending on the calculated similarity for the represented element.
If the element is only found in the first document, the red color is used for its node, rep-
resenting that this element was “removed” in the second document. If it is only found in
the second document, the green color is applied, meaning that the element was “added”.
When the resulting similarity of an element is greater than a given threshold, this ele-
ment is represented in the tree using a gray scale color scheme. The lighter the color, the
greater the similarity found for that element.

Figure 2. Phoenix diff tree visualization

 In addition to the already presented configurable weights of the similarity-based
approach, Phoenix tool allows the user to set extra parameters that adapt the similarity
calculation to specific application scenarios. A situation that deviates the overall simi-
larity calculation is the presence of trivial similarities, that is, total similarities (100%)
pointed by similarity component calculation where the considered feature (attributes,
for instance) is non-existent in both elements being compared. To illustrate this prob-
lem, consider, for instance, two elements that have no attributes. The attribute similarity
component in this case would be 100%. This may not be suitable in certain situations,
especially if we would like to focus on the differences instead of on the equalities. For
that, a parameter ignore trivial similarities was created. If set, the similarity calculation
algorithm will simply discard the similarity components identified as trivial during
evaluation. It is worth mentioning that the weight of discarded similarity components
will also be left out of the similarity formula.

 When comparing XML documents within the same XML schema, it is already
expected that the element names will be equal. If they are not equal, we should consider

the documents dissimilar. For these scenarios, a parameter called name similarity re-
quired was created. If set, the similarity calculation will stop if the name similarity
component is not 1.0, that is, if the names are not equal. It is also worth mentioning that
if this parameter is set, the name similarity component is excluded from the overall sim-
ilarity formula. With that, the weights from the remaining similarity components shall
sum up to 1.0.

 Another parameter is the automatic similarity weight, which equally distributes
the similarity weights, considering the other parameters. That is, if name similarity re-
quired is set, it will set the other three similarity component weights to 0.33. Also, if a
trivial similarity is found and the ignore trivial similarity parameter is set, the approach
will again equally distribute the weights to the remaining similarity components.

 Finally, the last parameter allows the configuration of the similarity threshold,
that is, the lower limit for the resulting overall similarity in which the approach consid-
ers the elements to match (have some similarity involved). If the found similarity is
lower than the threshold, the elements are not matched.

3.2 XChange

XChange is an XML semantic diff tool. Its main contribution is to support the under-
standing of XML documents evolution [Martins et al. 2013; Oliveira et al. 2014]. Ini-
tially, XChange used context keys to support the match of the corresponding elements
in different versions of the same XML document. The current tool, however, uses our
similarity-based approach.

 The input data consists of two versions (revisions) of an XML document and a
set of rules. These rules are divided into two categories: match rules and semantic en-
richment rules. The match rules are used to identify the corresponding elements in dif-
ferent versions. The rules of semantic enrichment try to understand the meaning of these
changes, i.e., to produce a semantic diff [Mens 2002].

Figure 3. Similarity results

XML document versions are pre-processed and transformed into a set of Prolog
facts [Bratko 2001]. However, before generating the Prolog facts, it is necessary to cal-
culate the similarity between all the elements that compose the XML document versions
to support the matching of the elements. This task is performed using the described sim-
ilarity-based approach. A domain expert specifies the similarity weight of each compo-
nent, the options to use with such weights and sets the minimum similarity threshold.
The result is an XML document that lists the elements of the two versions and their re-
spective similarities, as shown in Figure 3. It is worth mentioning that, in this applica-
tion, we only compare the elements values when there is a match in their names. This is
performed by configuring the similarity-based approach underneath. Our reasoning for
this is that we respect the schema and assume that elements or attributes with different
names should not be matched, regardless of the content.

This output is used to modify the original versions of the XML document, add-
ing an <id> element to the corresponding pairs of elements, matched by the similarity-
based approach rate. For elements with similarity below the minimum similarity thresh-
old, and also for those that do not have a corresponding match element, we add different
<id> tags. When all the similarity calculation is finished, the translation process gener-
ates several Prolog facts, transforming elements into predicates and their contents into
constants (shown in Figure 4). Finally, the Prolog inference engine applies the match
rules and the semantic rules on the generated Prolog facts and returns the high level
meaning of the changes. In other words, it is able to identify the reason of the evolution
of the XML document from an earlier version to a later one.

Figure 4. Prolog facts

4. Related Work

During XML documents evolution, it is important to highlight which were the changes
that took place to transform from an old version into a new version. To deal with this
problem, some diff approaches were developed. There are a number of techniques that
identify corresponding elements in XML documents based on context keys. There are
also algorithms that support change detection and subtree matching based on similarity
techniques. Following, we discuss some approaches that use these strategies.

XyDiff [Cobena et al. 2002] detects the differences between versions of XML
documents using a key-based approach. It uses ordered trees. Its strategy is to identify
large subtrees unchanged between two versions of the XML document, thus reducing
the amount of data to compare. Its running time is linear in the size of the document, but
it cannot guarantee an optimal result. In certain cases, the change set is not minimal. It
is worth mentioning that it considers the operations of insert, delete, and update of ele-
ments. It also considers the move operation on subtrees that transfers a node or a subtree
from one position to another. X-Diff [Wang et al. 2003] is also a key-based approach to
detect changes between versions of XML documents. It focuses on ensuring the optimal
delta, i.e., the minimum operation sequence that can transform the XML tree from one
version to the other. Moreover, it considers only the standard operation of insert, delete,
and update of elements in diffs. XKeyDiff [Santos e Hara 2004] is a diff algorithm that
uses XML keys to match elements that refer to the same entity in two versions of the
document. With that approach, it is able to find matches that may not be possible using
solely the structural analysis of XML documents. It uses the XyDiff algorithm [Cobena
et al. 2002] to find additional matches, and generates the edit script corresponding to the
correct order of operations that transforms a previous XML version into a new one.
MH-DIFF [Chawathe e Garcia-Molina 1997] detects changes between two structured
data snapshots, or trees. It shows the changes as an edit script and it considers the
standard operation, plus move and copy operations on subtrees. According to the au-
thors, MH-Diff transforms the change detection into a problem of computing a mini-
mum-cost edge cover of a bipartite graph. Although key-based techniques are effective,
they do not work on cases where the elements don’t present a key or if the elected key
changes across versions. Our similarity-based approach handles such situations.

There are also algorithms that already apply similarity across XML documents.
Tekli et al. [2009] discusses and classifies several algorithms according to the technique
they use: (1) Edit Distance (ED), for algorithms that use edit distance between the trees
representing the documents to derive similarity; (2) Information Retrieval, for those
used in query/document matching, generally applying approximations to reduce the re-
sponse time of queries, at the expense of decreasing the exactness and quality of the
matching; (3) Other application-specific techniques, such as structure matching and
path similarity. Our work provides an alternative to ED-based techniques, which are
focused on document/document structure and content matching. XML-SIM-CHANGE
[Viyanon e Madria 2010] detects XML similarity using change detection mechanism to
join XML document versions. Keys in subtrees play an important role in order to avoid
unnecessary comparisons of subtrees within different XML versions of the same docu-
ment. It uses a relational database to store XML versions and apply SQL for detecting
similarities. Differently from these approaches, our similarity-based approach is able to
provide a similarity degree amongst attributes, elements, and documents as a whole,
allowing a precise comparison of versions. We believe that this characteristic, combined
with the fine tuning of the weight in each similarity component, can increase the ap-
plicability of our approach. Although not entirely related to our approach, it is worth
mentioning that there are initiatives to XML document/grammar matching, such as
[Bertino et al. 2004; Xing 2006; Tekli et al. 2007]. These approaches try to identify
how similar to the grammar a document is. Thuy et al. [2013] also proposes metrics and
an approach to calculate XML schema similarity, useful in data integration.

5. Conclusion

This work introduced an approach for matching XML documents through an analysis of
similarity. Traditional approaches compare XML documents versions using, for exam-
ple, context keys to match elements. In some situations this is not feasible. There are
cases where it is not possible to define a context key. In other situations, when the ele-
ments are edited, there is no guarantee that the key values will remain the same across
versions. Our approach provides an alternative to element matching during XML docu-
ment comparison that is applicable even in those situations. Furthermore, with the flexi-
bility achieved through the configurable weights for each similarity component and the
parameters, our approach allows applications to obtain different similarity degrees from
the document comparison. Future work may contribute to enhance the user application
interaction, so it becomes more intuitive in the context of setting the parameters. We
will perform independent sensibility tests to find out the best values for each parameter
in each context. Also, we plan to conduct an experimental evaluation to measure the
runtime and the quality of the match when compared to existing approaches.

Acknowledgement

We would like to thank CNPq and FAPERJ for the financial support.

References

ARGÜELLO, M., DES, J., FERNANDEZ-PRIETO, M. J., PEREZ, R., PANIAGUA, H. Executing
Medical Guidelines on the Web: Towards Next Generation Healthcare. In Applications
and Innovations in Intelligent Systems XVI, Springer London, p. 197–210, 2009.

BERTINO, E., GUERRINI, G., MESITI, M. A matching algorithm for measuring the struc-
tural similarity between an XML document and a DTD and its applications. Inf. Syst.
29(1): 23–46, 2004.

BRATKO, I. Prolog programming for artificial intelligence. Addison Wesley, Harlow,
England; New York, 2001.

BRAY, T., PAOLI, J., SPERBERG-MCQUEEN, C. M., MALER, E., YERGEAU, F. Extensible
Markup Language (XML) 1.0 (Fifth Edition)., 2008.

BUNEMAN, P., DAVIDSON, S., FAN, W., HARA, C., TAN, W.-C. Reasoning about keys for
XML. Inf. Syst. 28(8): 1037–1063, 2003.

CHAWATHE, S. S., GARCIA-MOLINA, H. Meaningful Change Detection in Structured
Data. In ACM SIGMOD International Conference on Management of Data, ACM, New
York, USA, p. 26–37, 1997.

COBENA, G., ABITEBOUL, S., MARIAN, A. Detecting changes in XML documents. In
International Conference on Data Engineering (ICDE), IEEE Computer Society, San
Jose, California, USA, p. 41–52, 2002.

COHEN, W. W., RAVIKUMAR, P., FIENBERG, S. E. A Comparison of String Metrics for
Matching Names and Records. In KDD Workshop on Data Cleaning and Object Con-
solidation, p. 73–78, 2003.

CORMEN, T. H., LEISERSON, C. E., RIVEST, R. L., STEIN, C. Introduction to Algorithms.
The MIT Press, 2009.

DORNELES, C. F., HEUSER, C. A., LIMA, A. E. N., SILVA, A. S. DA, MOURA, E. S. DE.
Measuring Similarity Between Collection of Values. In Proceedings of the 6th Annual
ACM International Workshop on Web Information and Data Management WIDM ’04.,
ACM, New York, NY, USA, p. 56–63, 2004.

GETOV, V. e-Science: The Added Value for Modern Discovery. Computer 41(11): 30–
31, 2008.

HALLO CARRASCO, M., MARTÍNEZ-GONZÁLEZ, M. M., LA FUENTE REDONDO, P. DE.
Data Models for Version Management of Legislative Documents. J. Inf. Sci. 39(4):
557–572, 2013.

KUHN, H. W. The Hungarian Method for the Assignment Problem. Nav. Res. Logist.
2(1-2): 83–97, 1955.

LIMA, A. E. N., DORNELES, C., HEUSER, C. Eris: Um protótipo para consulta por simila-
ridade a bases de dados XML. In Sessão de Demos do Simpósio Brasileiro de Banco de
Dados, SBC, Brasília, DF, p. 13–18, 2004.

MARTINS, G., LARCHER, J., OLIVEIRA, A., MURTA, L., BRAGANHOLO, V. XChange:
Compreensão de Mudanças em Documentos XML. In Sessão de Demos do Simpósio
Brasileiro de Banco de Dados, SBC, Recife, PE, p. 31–36, 2013.

MENS, T. A State-of-the-Art Survey on Software Merging. IEEE Trans. Softw. Eng.
28(5): 449–462, 2002.

OLIVEIRA, A., MURTA, L., BRAGANHOLO, V. Towards Semantic Diff of XML Docu-
ments. In Symposium on Applied Computing (SAC), ACM, Gyeongju, Korea, p. 833–
838, 2014.

SANTOS, R. C., HARA, C. S. XKeyDiff - Um algoritmo semântico para detecção de mu-
danças entre documentos XML. Rev. Eletrônica Iniciaç. Científica REIC 4(3), 2004.

TEKLI, J., CHBEIR, R., YETONGNON, K. Structural Similarity Evaluation Between XML
Documents and DTDs. In Web Information Systems Engineering – WISE 2007 Lecture
Notes in Computer Science., Springer Berlin Heidelberg, p. 196–211, 2007.

TEKLI, J., CHBEIR, R., YETONGNON, K. An overview on XML similarity: Background,
current trends and future directions. Comput. Sci. Rev. 3(3): 151–173, 2009.

THUY, P. T. T., LEE, Y.-K., LEE, S. Semantic and structural similarities between XML
Schemas for integration of ubiquitous healthcare data. Pers. Ubiquitous Comput. 17(7):
1331–1339, 2013.

VIYANON, W., MADRIA, S. K. XML-SIM-CHANGE: Structure and Content Semantic
Similarity Detection among XML Document Versions. In On the Move to Meaningful
Internet Systems, OTM 2010 Lecture Notes in Computer Science., Springer Berlin Hei-
delberg, p. 1061–1078, 2010.

WANG, Y., DEWITT, D. J., CAI, J.-Y. X-Diff: an effective change detection algorithm
for XML documents. In International Conference on Data Engineering (ICDE), IEEE
Computer Society, Bangalore, India, p. 519 – 530, 2003.

XING, G. Fast Approximate Matching Between XML Documents and Schemata. In
Frontiers of WWW Research and Development - APWeb 2006 Lecture Notes in Com-
puter Science., Springer Berlin Heidelberg, p. 425–436, 2006.

