Mecânica Quântica II

Jens Mund

Notas de aula incompletas, DF-UFJF, Período 2021-3

Contents

1	Pro	duto tensorial, multi-partículas, CSCO	2
	1.1	Produto tensorial	2
	1.2	Sistemas de n partículas; partículas idénticas	4
	1.3	CSCO ("Complete set of commuting observables")	5
2	Mo	mento angular; Spin	5
	2.1	Partículas com spin $\frac{1}{2}$	5
	2.2	Revisão: Momento angulâr	6
	2.3	Adição de momenta angulares	7
	2.4	Teorema de Wigner-Eckart	10
	2.5	Elétron no campo magnético uniforme e elétrico	10
		2.5.1 Generalidades	10
		2.5.2 Efeito Zeeman "normal"	12
		2.5.3 Fator de Landé	13
		2.5.4 Acoplamento J - J	14
3	Teoria de perturbação independente de tempo 1		
	3.1	O método	14
	3.2	Método variacional	17
	3.3	Exemplos: Estrutura fina e hiperfina do átomo de hidrogêneo	18
4	Teo	ria de perturbação dependente de tempo	18
	4.1	Série de Dyson	18
	4.2	Cenário de interação	19
	4.3	Absorção e emissão induzida	21
	4.4	Regra de ouro de Fermi	21
5	Teoria de espalhamento		22
	5.1	Seção de choque	22
	5.2	Teoria de espalhamento independente de tempo	24
	5.3	Teoria de espalhamento dependente de tempo	26

1 Produto tensorial, multi-partículas, CSCO

1.1 Produto tensorial

Sejam U e V dois espaços unitários de dimensão finita, i.e, com produto escalar (u, u'). O produto tensorial U e V, em símbolos $U \otimes V$, é por definição o espaço das aplicações bilineares de $U \times V$ em \mathbb{C} ,

$$U \otimes V \doteq \{U \times V \to \mathbb{C}, \text{ bilinear}\},$$
 (1)

Dado $\boldsymbol{u}\in U,\ \boldsymbol{v}\in V$, define-se o "produto tensorial" $\boldsymbol{u}\otimes\boldsymbol{v}\in U\otimes V$ pela aplicação $U\times V\to\mathbb{C}$ dada por

$$(\boldsymbol{u} \otimes \boldsymbol{v})(\boldsymbol{u}', \boldsymbol{v}') := (\boldsymbol{u}, \boldsymbol{u}') (\boldsymbol{v}, \boldsymbol{v}'). \tag{2}$$

(Cuidado: No lado esquerdo, (u', v') denota o par, e no lado direito, o produto escalar!) Um produto escalar em $U \otimes V$ é definido por

$$(\boldsymbol{u} \otimes \boldsymbol{v}, \boldsymbol{u}' \otimes \boldsymbol{v}') := (\boldsymbol{u}, \boldsymbol{u}') (\boldsymbol{v}, \boldsymbol{v}'). \tag{3}$$

Se U e/ou V tem dimensão infinita e os dois são completos (i.e., eles são espaços de Hilbert), o produto tensorial deles é definido como seguinte. Definem-se primeiro os produtos $\boldsymbol{u} \otimes \boldsymbol{v}$ como aplicações bilineares $U \times V \to \mathbb{C}$ pela equação (2). Depois define-se $U \otimes_0 V$ como o espaço das combinações lineares (finitas) de elementos da forma $\boldsymbol{u} \otimes \boldsymbol{v}$, e $U \otimes V$ como a completação de $U \otimes_0 V$. Vale o seguinte teorema [5, p. 52]:

Teorema 1 Se $\{\varphi_i\}$ é uma BON (base ortonormal) em U, e $\{\chi_j\}$ uma BON em V, então $\{\varphi_i \otimes \chi_j\}$ é uma BON em $U \otimes V$.

No caso de espaços do tipo $L^2(M)$ podemos fazer as identificações

$$L^{2}(M) \otimes V \cong L^{2}(M; V), \quad L^{2}(M_{1}) \otimes L^{2}(M_{2}) \cong L^{2}(M_{1} \times M_{2}).$$

Em mais detalhes:

i) Dado $M \subset \mathbb{R}^k$ e V um espaço vetorial, seja $L^2(M;V)$ o espaço de funções $\boldsymbol{f}: M \to V$ com $\|\boldsymbol{f}\|^2 \doteq \int_M \|\boldsymbol{f}(x)\|_V^2 d^k x < \infty$. Produto escalar em $L^2(M;V)$:

$$(\boldsymbol{f}, \boldsymbol{g}) \doteq \int_{M} (\boldsymbol{f}(x), \boldsymbol{g}(x))_{V} d^{k}x.$$
 (4)

Dado $f \in L^2(M)$ e $\boldsymbol{v} \in V$, define um elemento $f \otimes' \boldsymbol{v} \in L^2(M;V)$ por

$$(f \otimes' \mathbf{v})(x) \doteq f(x) \mathbf{v}. \tag{5}$$

ii) Dado $f \in L^2(M_1)$ e $g \in L^2(M_2)$, define uma função $f \otimes g$ em $L^2(M_1 \times M_2)$ por

$$(f \tilde{\otimes} g)(x, y) \doteq f(x) g(y). \tag{6}$$

Corolário 2 i) A aplicação

$$U': L^2(M; V) \to L^2(M) \otimes V, \quad f \otimes' \mathbf{v} \mapsto f \otimes \mathbf{v}$$
 (7)

é um isomorfismo unitário.

ii) A aplicação

$$\tilde{U}: L^2(M_1 \times M_2) \to L^2(M_1) \otimes L^2(M_2), \quad f \tilde{\otimes} g \mapsto f \otimes g$$
 (8)

é um isomorfismo unitário.

O Corolário afirma:

- Se $\{\varphi_i\}$ é uma BON em $L^2(M)$ e $\{a_j\}$ é uma BON em V, então $\{\varphi_i \otimes' a_j\}$ é uma BON em $L^2(M;V)$.
- Se $\{\varphi_i\}$ é uma BON em $L^2(M_1)$ e $\{\chi_j\}$ é uma BON em $L^2(M_2)$, então $\{\varphi_i \tilde{\otimes} \chi_j\}$ é uma BON em $L^2(M_1 \times M_2)$.

Exemplo: Escrevendo $\mathbb{R}^2 \setminus \{0\} \cong \mathbb{R}^+ \times S^2$ e $d^3 \boldsymbol{x} = r^2 dr d\Omega$, temos

$$L^{2}(\mathbb{R}^{3}, d^{3}\boldsymbol{x}) \equiv L^{2}(\mathbb{R}^{+}, r^{2}dr) \otimes L^{2}(S^{2}, d\Omega).$$

Operadores em $\mathcal{H}_1 \otimes \mathcal{H}_2$

$$(A \otimes B)(\psi_1 \otimes \psi_2) \doteq A\psi_1 \otimes B\psi_2.$$

Verifique-se facilmente que os operadores $A \otimes \mathbb{1}$ e $\mathbb{1} \otimes B$ comutam, então podem ser diagonalizados simultaneamente. De fato: Se $\{\varphi_{\nu,i}\}$ é uma BON de auto-vetores do operador A em \mathcal{H}_1 e $\{\chi_{\mu,j}\}$ é uma BON de auto-vetores do operador B em \mathcal{H}_2 ,

$$A\varphi_{\nu,i} = a_{\nu} \cdot \varphi_{\nu,i}, \quad B\chi_{\mu,j} = b_{\mu} \cdot \chi_{\mu,j} \,, \tag{9}$$

então $\{\varphi_{\nu,i} \otimes \chi_{\mu,j}\}$ é uma BON de auto-vetores simultáneos dos operadores $A \otimes \mathbb{1}$ e $\mathbb{1} \otimes B$ em $\mathcal{H}_1 \otimes \mathcal{H}_2$:

$$(A \otimes 1)(\varphi_{\nu,i} \otimes \chi_{\mu,j}) = a_{\nu} \cdot \varphi_{\nu,i} \otimes \chi_{\mu,j}$$
$$(1 \otimes B)(\varphi_{\nu,i} \otimes \chi_{\mu,j}) = b_{\mu} \cdot \varphi_{\nu,i} \otimes \chi_{\mu,j}$$

Usando o calculo funcional, achamos $f(A \otimes 1) = f(A) \otimes 1$.

Supomos $\psi \in \mathcal{H}_1 \otimes \mathcal{H}_2$ é normalizado. Então, pela Eq. (83) em [4], a probablididade conjunta de encontrar um valor de A no intervalo I e um valor de B em J é dada por

$$P_{\psi}(A \in I \land B \in J) = \sum_{\nu: a_{\nu} \in I, b_{\nu} \in J} \sum_{i,j} |(\varphi_{\nu,i} \otimes \chi_{\mu,j}, \psi)|^{2}.$$

$$(10)$$

Estados não-correlatos. Consideramos 2 sistemas, descritas pelos espaços de Hilbert \mathcal{H}_1 e \mathcal{H}_2 . Consideramos um observável A referente ao sistema 1 e um observável B referente ao sistema 2, e supomos que os estados dos sistemas 1 e 2 sejam descritos pelos vetores ψ_1 e ψ_2 , respetivamente.

A Eq. (10) implica que no estado $\psi = \psi_1 \otimes \psi_2$, a probablididade conjunta de encontrar um valor de A no intervalo I e um valor de B em J é dada por

$$P_{\psi_1 \otimes \psi_2}(A \in I \land B \in J) = P_{\psi_1}(A \in I) \cdot P_{\psi_2}(B \in J). \tag{11}$$

Isso implica que os observáveis A (referente apenas ao sistema 1) e B (referente apenas ao sistema 2), em estados da forma $\psi_1 \otimes \psi_2$, são estatisticamente independentes [4, Eq. (27)], e daí não-correlatos. Isso não vale para estados gerais, que são da forma $\sum_i \psi_i \otimes \chi_i$! Veja [1, D_{III}]. (Estes estados gerais mostram correlações do tipo Einstein-Podolski-Rosen.)

Resumindo: O estado $\psi_1 \otimes \psi_2$ descreve a simples justaposição dos sistemas 1 e 2; o sistema 1 sendo no estado ψ_1 e o sistema 2 no estado ψ_2 .

1.2 Sistemas de n partículas; partículas idénticas

Consideramos duas partículas, preparadas independentemente de tal maneira que a partícula 1 se encontra no estado ψ_1 e a partícula 2 no estado ψ_2 . O sistema composto é descrito pelo estado $\psi_1 \otimes \psi_2$. Na representação de Schrödinger, o operador $f(\boldsymbol{X}) \otimes g(\boldsymbol{X})$ age como

$$((f(X) \otimes g(X))(\psi_1 \otimes \psi_2))(x, y) \equiv (f(X)\psi_1 \otimes g(X)\psi_2)(x, y) = f(x)g(y) \cdot (\psi_1 \otimes \psi_2)(x, y).$$

Por linearidade, isso implica que em qualquer estado $\psi \in L^2(\mathbb{R}^3) \otimes L^2(\mathbb{R}^3) \equiv L^2(\mathbb{R}^3 \times \mathbb{R}^3)$ no domínio de $f(X) \otimes g(X)$ este operador age como

$$((f(\boldsymbol{X}) \otimes g(\boldsymbol{X}))\psi)(\boldsymbol{x}, \boldsymbol{y}) = f(\boldsymbol{x})g(\boldsymbol{y}) \cdot \psi(\boldsymbol{x}, \boldsymbol{y}).$$
(12)

Pela Eq. (82) das notas sobre MQI [4] concluimos: Num estado normalizado $\psi \in L^2(\mathbb{R}^3 \times \mathbb{R}^3)$, a probabilidade conjunta de encontrar a partícula 1 na região G_1 e a partícula 2 na região G_2 é dada por

$$P_{\psi}(\boldsymbol{X}_{(1)} \in G_1 \wedge \boldsymbol{X}_{(2)} \in G_2) = (\psi, c_{G_1}(\boldsymbol{X}) \otimes c_{G_2}(\boldsymbol{X})\psi) = \int \overline{\psi(\boldsymbol{x}, \boldsymbol{y})} c_{G_1}(\boldsymbol{x}) c_{G_2}(\boldsymbol{y}) \psi(\boldsymbol{x}, \boldsymbol{y}) d^3 \boldsymbol{x} d^3 \boldsymbol{y}$$
$$= \int_{G_1 \times G_2} |\psi(\boldsymbol{x}, \boldsymbol{y})|^2 d^3 \boldsymbol{x} d^3 \boldsymbol{y}.$$

Em outras palavras, $|\psi(\boldsymbol{x},\boldsymbol{y})|^2$ é a densidade de probabilidade conjunta de encontrar a partícula 1 em \boldsymbol{x} e a partícula 2 em \boldsymbol{y} .

$$\int_{G_1 \times G_2} d^3 \boldsymbol{x} d^3 \boldsymbol{y} \left| \left(\delta_{\boldsymbol{x}} \otimes \delta_{\boldsymbol{y}}, \psi \right) \right|^2 = \int_{G_1 \times G_2} \left| \psi(\boldsymbol{x}, \boldsymbol{y}) \right|^2 d^3 \boldsymbol{x} d^3 \boldsymbol{y} ,$$

pois $(\delta_{\boldsymbol{x}} \otimes \delta_{\boldsymbol{y}}, \psi) = \psi(\boldsymbol{x}, \boldsymbol{y}).$

¹Isso também segue da Eq. (10), veja discussão depois Eq. (18): Considerando que o conjunto $\{\delta_x \otimes \delta_y, x, y \in \mathbb{R}^3\}$ é uma BON contínua de autovetores (generalizadas) simultáneas do operadores $X \otimes 1$ e $\mathbb{1} \otimes X$, a probabilidade de encontrar a partícula 1 na região G_1 e a partícula 2 na região G_2 é dada por

Dinâmica. Consideramos dois sistemas com respetivos espaços de estados $\mathcal{H}_1, \mathcal{H}_2$ e Hamiltoneanos H_1, H_2 . O sistema composto pelos dois (sub-)sistemas é descrito pelo espaço $\mathcal{H}_1 \otimes \mathcal{H}_2$. Se não tem interação entre eles, a dinâmica é descrita pelo Hamiltoneano $H_1 \otimes 1 + 1 \otimes H_2$. Neste caso, se o estado inicial é da forma $\psi_1 \otimes \psi_2$, a evolução temporal será $\psi_t = \psi_{1,t} \otimes \psi_{2,t}$. (Exercício.) (Em particular, o estado permanece não-correlato.)

Se os subsistemas interagem entre se, o Hamiltoneano do sistema composto tem um termo mais, tipicamente da forma $V(X \otimes 1, 1 \otimes X)$, onde $V(x_1, x_2)$ é o potencial descrevendo a interação. Neste caso, mesmo se o estado inicial é não-correlato, i.e. da forma $\psi_1 \otimes \psi_2$, para quase todos tempos o estado ψ_t será correlato.

Partículas idénticas.

1.3 CSCO ("Complete set of commuting observables")

2 Momento angular; Spin

2.1 Partículas com spin $\frac{1}{2}$

Consideramos um eléctron, que possui spin 1/2, na representação de Schrödinger. Da MQ1 sabemos que os três componentes S_x, S_y, S_z do spin comutam com os 3 componentes X_1, X_2, X_3 do operador multiplicação e os 3 componentes P_1, P_2, P_3 do momento. Os únicos operadores com essas propriedades são os múltiplos da unidade. Mas S_z tem espectro $\{\frac{\hbar}{2}, -\frac{\hbar}{2}\}$ – enquanto que a unidade tem espectro $\{1\}$. Isso implica que o espaço de estados do eléctron (com spin 1/2) é maior que $L^2(\mathbb{R}^3)$, a saber, da forma

$$\mathcal{H} = L^2(\mathbb{R}^3) \otimes V = L^2(\mathbb{R}^3; V), \qquad (13)$$

onde V é um espaço linear da dimensão $d \geq 2$. Vamos escolher a descrição sem degenerescência, com d = 2. Pegamos uma BON $\{\chi_+, \chi_-\}$ de auto-vetores de S_z :

$$S_z \chi_{\pm} = \pm \frac{\hbar}{2} \cdot \chi_{\pm} \,. \tag{14}$$

Os elementos do espaço $L^2(\mathbb{R}^3; V)$ são da forma²

$$\vec{\psi} = \sum_{\varepsilon \in \{\pm\}} \psi_{\varepsilon} \otimes \chi_{\varepsilon} \quad \text{com } \psi_{\varepsilon} \in L^{2}(\mathbb{R}^{3}).$$
 (15)

Pelo Cap. 1.1, a norma do vetor (15) é

$$\|\vec{\psi}\|^2 = \sum_{\varepsilon \in \{\pm\}} \|\psi_{\varepsilon}\|_{L^2}^2 = \sum_{\varepsilon} \int_{\mathbb{R}^3} d^3 \boldsymbol{x} \, |\psi_{\varepsilon}(\boldsymbol{x})|^2 \,. \tag{16}$$

$$\vec{\psi}(\boldsymbol{x}) = \sum_{\varepsilon} (\chi_{\varepsilon}, \vec{\psi}(\boldsymbol{x}))_{V} \chi_{\varepsilon} = \sum_{\varepsilon} \psi_{\varepsilon}(\boldsymbol{x}) \chi_{\varepsilon},$$

onde chamamos $(\chi_{\varepsilon}, \vec{\psi}(\boldsymbol{x}))_V =: \psi_{\varepsilon}(\boldsymbol{x}) \text{ e } (\cdot, \cdot)_V$ denota o produto escalar em V. Como (pela Eq. (5)) $\psi_{\varepsilon}(\boldsymbol{x}) \chi_{\varepsilon} = (\psi_{\varepsilon} \otimes \chi_{\varepsilon})(\boldsymbol{x})$, isso mostra a Eq. (15).

²Isso pela seguinte razão. Como $\vec{\psi}(x)$ é um vetor em V, ele pode ser expandido em termos da BON $\{\chi_+,\chi_-\}$:

Interpretação. Temos

$$((X_k \otimes 1)\vec{\psi})(\boldsymbol{x}) = \sum_{\varepsilon \in \{\pm\}} x_k \psi_{\varepsilon}(\boldsymbol{x}) \cdot \chi_{\varepsilon}, \quad (1 \otimes S_z)\vec{\psi} = \sum_{\varepsilon \in \{\pm\}} \frac{\varepsilon \hbar}{2} \psi_{\varepsilon} \otimes \chi_{\varepsilon}.$$
 (17)

Por isso, $\{\delta_{\boldsymbol{x}} \otimes \chi_{\varepsilon}, \ \boldsymbol{x} \in \mathbb{R}^3, \ \varepsilon \in \{\pm\}\}$ é uma BON contínua de autovetores (generalizadas) simultáneas dos operadores \boldsymbol{X} e S_z . Pela Eq. (81) em [4], a probabilidade de encontrar o elétron na região G é dada por

$$P_{\vec{\psi}}(\boldsymbol{X} \in G) = \int_{G} d^{3}\boldsymbol{x} \sum_{\varepsilon \in \{\pm\}} |(\delta_{\boldsymbol{x}} \otimes \chi_{\varepsilon}, \vec{\psi})|^{2}.$$

Usando a expansão (15), temos

$$(\delta_{\boldsymbol{x}} \otimes \chi_{\varepsilon}, \vec{\psi}) = \sum_{\varepsilon'} (\delta_{\boldsymbol{x}} \otimes \chi_{\varepsilon}, \psi_{\varepsilon'} \otimes \chi_{\varepsilon'}) = \sum_{\varepsilon'} (\delta_{\boldsymbol{x}}, \psi_{\varepsilon'}) (\chi_{\varepsilon}, \chi_{\varepsilon'}) = \psi_{\varepsilon}(\boldsymbol{x})$$
(18)

pois $(\delta_{\boldsymbol{x}}, \psi_{\varepsilon'}) = \psi_{\varepsilon'}(\boldsymbol{x})$ e $(\chi_{\varepsilon}, \chi_{\varepsilon'}) = \delta_{\varepsilon\varepsilon'}$. Concluimos que a probabilidade de encontrar o elétron na região G é dada por

$$P_{\vec{\psi}}(\boldsymbol{X} \in G) = \int_{G} d^{3}\boldsymbol{x} \sum_{\varepsilon \in \{\pm\}} |\psi_{\varepsilon}(\boldsymbol{x})|^{2}.$$
(19)

Similarmente, pela Eq; (10), a probabilidade de encontrar o elétron na região G e também com um valor de $\pm \frac{\hbar}{2}$ da componente-3 do spin e dada por

$$P_{\vec{\psi}}(\boldsymbol{X} \in G \wedge S_z = \pm \frac{\hbar}{2}) = \int_G d^3 \boldsymbol{x} \, |\psi_{\pm}(\boldsymbol{x})|^2.$$

Exercício 3 Exercise 1 em [1, B_{IX}]. Observe a notação de [1]:

$$|\boldsymbol{r},\pm\rangle := \delta_{\boldsymbol{r}} \otimes \chi_{\pm}, \quad \langle \boldsymbol{r},\pm|\psi\rangle = \psi_{\pm}(\boldsymbol{r}).$$

2.2 Revisão: Momento angulâr

Uma tripla de operadores $\mathbf{J} = (J_x, J_y, J_z)$ é chamda de operador de momento angular se para todo $k, l \in \{x, y, z\}$ vale a relação de comutação

$$[J_k, J_l] = \sum_{m \in \{x, y, z\}} i\hbar \,\varepsilon_{klm} J_m \,, \tag{20}$$

onde ε_{klm} é o símbolo de Leví-Civitá.³ Exemplos são o momento angular orbital L agindo em $L^2(\mathbb{R}^3)$ e o spin S agindo em \mathbb{C}^2 . Se existe um tal operador de momento angular, pode-se construir uma BON

$$\{|k, j, m\rangle, \ k \in K, j \in I, m \in \{-j, \dots, j\}\}$$
 (21)

$$\varepsilon_{klm} := \begin{cases} 0, & \text{se } \{k,l,m\} \neq \{1,2,3\}, \\ 1, & \text{se } (1,2,3) \mapsto (k,l,m) \text{ \'e uma permutação par,} \\ -1, & \text{se } (1,2,3) \mapsto (k,l,m) \text{ \'e uma permutação impar.} \end{cases}$$

³Identificando os índices $\{x,y,z\}$ com $\{1,2,3\}$ (e.g. $\varepsilon_{xyz}=\varepsilon_{123}$), a definição é

de autovetores simultaneos de $J^2 \doteq \sum_l J_l^2$ e J_z :

$$\mathbf{J}^{2}|k,j,m\rangle = j(j+1)\hbar^{2}|k,j,m\rangle, \qquad J_{z}|k,j,m\rangle = m\hbar|k,j,m\rangle.$$
 (22)

Em (21), $K \subset \mathbb{R}$ e I são conjuntos de índices, sendo que $I \subset \frac{1}{2}\mathbb{N}_0 = \{0, \frac{1}{2}, 1, \frac{3}{2} \dots\}$. Quais valores de j aparecem, depende do sistema. A BON (21) é chamada de "BON padrão". A construção dessa BON usa os operadores de escada $J_{\pm} \doteq J_x \pm iJ_y$. Vale

$$J_{\pm}|k,j,m\rangle = c_{j,m}^{\pm}|k,j,m\pm 1\rangle,$$
 $c_{j,m}^{\pm} = \sqrt{(j(j+1) - m(m\pm 1))}\,\hbar.$ (23)

Observamos ainda o seguinte

Lemma 4 Sejam $\phi \perp \phi'$ vetores perpendiculares em \mathcal{E}_{jm} . Então para todo n, os vetores $J^n_{\pm}\phi$ e $J^n_{\pm}\phi'$ também são perpendiculares.

Comprovante. Simples. \Box

2.3 Adição de momenta angulares

Consideramos 2 espaços de Hilbert \mathcal{H}_1 , \mathcal{H}_2 , cada um com um operador de momento angular J_{ν} , $\nu=1,2$, e uma BON padrão $\{|k,j,m\rangle_{\nu},\ k\in K_{\nu}, j\in I_{\nu}, -j\leq m\leq j\}$. O sistema composto é descrito pelo espaço $\mathcal{H}_1\otimes\mathcal{H}_2$. Definimos

$$J_{(1)} \doteq J_1 \otimes \mathbb{1}, \quad J_{(2)} \otimes \mathbb{1} \otimes J_2$$

e o momento angular total

$$oldsymbol{J} \doteq oldsymbol{J}_{(1)} + oldsymbol{J}_{(2)}$$
 .

Verifique-se diretamente que isso é um operador de momento angular no sentido das relações (20). Ademais, para todo $k \in \{x, y, z\}$ e $\nu \in \{1, 2\}$ vale

$$[J_k, \boldsymbol{J}_{(\nu)}^2] = 0 = [J_z, J_{(\nu)z}].$$
 (24)

Por conseguinte temos dois conjuntos de operadores comutantes em $\mathcal{H}_1 \otimes \mathcal{H}_1$:

(A)
$$\{J_{(1)}^2, J_{(2)}^2, J_{(1)z}, J_{(2)z}\}$$
 (25)

(B)
$$\{J_{(1)}^2, J_{(2)}^2, J^2, J_z\}$$
. (26)

Os vetores

$$|k_1, j_1, m_1\rangle_1 \otimes |k_2, j_2, m_2\rangle_2 \tag{27}$$

fornecem uma BON de auto-vetores simultâneos para o conjunto (A), com respetivos autovalores $\hbar^2 j_1(j_1+1)$, $\hbar^2 j_2(j_2+1)$, $\hbar m_1$ e $\hbar m_2$. Nosso objetivo é a construção de uma BON de autovetores simultâneos

$$|k_1, k_2, j_1, j_2; k, j, m\rangle$$

para o conjunto (B), com respetivos auto-valores $\hbar^2 j_1(j_1+1)$, $\hbar^2 j_2(j_2+1)$, $\hbar^2 j(j+1)$ e $\hbar m$. (O índice k rotula as possíveis degenerescências do autovalor j. Depois vamos ver que os j não são degenerados, ou seja, o índice k assume apenas um valor e pode ser

desconsiderado.) Denotamos por $\mathcal{E}_{\nu;k,j}$ o span em \mathcal{H}_{ν} dos vetores $\{|k,j,m\rangle_{\nu}, -j \leq m \leq j\}$ e

$$\mathcal{E}_{k_1,k_2,j_1,j_2} \doteq \mathcal{E}_{1:k_1,j_1} \otimes \mathcal{E}_{2:k_2,j_2} \,. \tag{28}$$

Esse espaço é invariante sob todos os operadores nos conjuntos (A) e (B). A nossa tarefa se reduz à construção de uma BON de autovetores de (B) em cada um desses espaços.

Vamos construir essa BON, com os índices k_1, k_2, j_1, j_2 fixos. Para fixar ideias, supomos que $j_1 \geq j_2$. (No caso geral, precisamos só substituir $j_1 - j_2$ por $|j_1 - j_2|$ no final.) No seguinte, vamos suprimir a notação desses índices: Escrevemos $\mathcal{E} \doteq \mathcal{E}_{k_1,k_2,j_1,j_2}$ e

$$|m_1\rangle|m_2\rangle \doteq |k_1,j_1,m_1\rangle_1\otimes |k_2,j_2,m_2\rangle_2, \quad |\mathbf{k},j,m\rangle \doteq |k_1,k_2,j_1,j_2;k,j,m\rangle.$$

Denotamos por \mathcal{E}_j o auto-espaço de J^2 com autovalor $\hbar^2 j(j+1)$:

$$\mathcal{E}_i \doteq \operatorname{span} \{|k, j, m\rangle, \ k \in K, -j \leq m \leq j\}$$

onde o conjunto de indices K ainda é desconhecido (vamos ver que é trivial).

Obviamente, o vetor $|m_1\rangle|m_2\rangle$ é um autovetor de J_z com autovalor $\hbar(m_1+m_2)$. Como $m_{\nu} \leq j_{\nu}$, o auto-valor de J_z mais alto em \mathcal{E} é $m_{\max} = j_1 + j_2$. Isso também deve ser o valor máximo de j em \mathcal{E} :

$$j_{\text{max}} = j_1 + j_2. \tag{29}$$

Passo (0), $j=j_{\max}$: Definimos $|1,j_{\max},j_{\max}\rangle \doteq |j_1\rangle|j_2\rangle$. Aplicando o operador de escada $J_-\equiv J_{1-}\otimes \mathbb{1} + \mathbb{1}\otimes J_{2-}$ e normalizando, obtém-se o auto-vetor com o mesmo $j=j_{\max}$ e o m diminuido por $1, m=j_{\max}-1$:

$$|\mathbf{1}, j_{\max}, j_{\max} - 1\rangle \doteq (c_{j_{\max}j_{\max}}^{-})^{-1} J_{-}|j_{\max}, j_{\max}\rangle,$$

$$= (c_{j_{\max}j_{\max}}^{-})^{-1} [J_{1-}|j_{1}\rangle \otimes |j_{2}\rangle + |j_{1}\rangle \otimes J_{2-}|j_{2}\rangle]$$

$$= (c_{j_{\max}j_{\max}}^{-})^{-1} [c_{j_{1}j_{1}}^{-}|j_{1} - 1\rangle |j_{2}\rangle + c_{j_{2}j_{2}}^{-}|j_{1}\rangle |j_{2} - 1\rangle]$$

$$= \frac{1}{\sqrt{j_{1} + j_{2}}} [\sqrt{j_{1}} |j_{1} - 1\rangle |j_{2}\rangle + \sqrt{j_{2}} |j_{1}\rangle |j_{2} - 1\rangle]$$
(31)

onde c_{jm}^- são os coeficientes da Eq. (23). (Na formula explicita (31), usamos $c_{jj}^- = \hbar \sqrt{2j}$.) Iterando essa operação $2j_{\max}$ vezes, constroi-se os vetores $|1,j_{\max},j_{\max}\rangle,\ldots,|1,j_{\max},-j_{\max}\rangle$. O Lemma 4, junto com o fato que $|j_1\rangle|j_2\rangle$ é o único vetor com $m=j_1+j_2$, implicam que o complemento ortogonal do span desses vetores não contém vetores com $j=j_{\max}$, ou seja, esse span coincede com $\mathcal{E}_{j_{\max}}$. Daí, podemos suprimir o índice k=1 e escrever $|j,m\rangle$ em vez de $|1,j,m\rangle$.

Passo (1), $j = j_{\text{max}} - 1$: Consideramos o complemento ortogonal de $\mathcal{E}_{j_{\text{max}}}$. Neste espaço, o maior valor de m (e consequentemente de j) é $j_{\text{max}} - 1$. Definimos $|j_{\text{max}} - 1, j_{\text{max}} - 1\rangle$ como o único (módulo fator) vetor no span dos vetores $|j_1\rangle|j_2 - 1\rangle$ e $|j_1 - 1\rangle|j_2\rangle$ contido em $\mathcal{E}_{j_{\text{max}}}^{\perp}$, ou seja,⁴ que é ortogonal em $|j_{\text{max}}, j_{\text{max}} - 1\rangle$ (dado explicitamente em (31).)

⁴Como $|j_{\max}, j_{\max-1}\rangle$ é o único vetor em $\mathcal{E}_{j_{\max}}$ com $m = j_{\max} - 1$, temos span $\{|j_1\rangle|j_2 - 1\rangle, |j_1 - 1\rangle|j_2\rangle\} \cap \mathcal{E}_{j_{\max}}^{\perp} = \text{span }\{|j_1\rangle|j_2 - 1\rangle, |j_1 - 1\rangle|j_2\rangle\} \cap |j_{\max}, j_{\max-1}\rangle^{\perp}$, que é únidimensional. Daí, o vetor $|j_{\max} - 1, j_{\max} - 1\rangle$ realmente é único módulo fator.

Aplicando o operador de escada J_{-} $2(j_{\text{max}}-1)$ vezes e normalizando cada vez, obtémse os auto-vetores $|j_{\text{max}}-1,j_{\text{max}}-1\rangle,\ldots,|j_{\text{max}}-1,-(j_{\text{max}}-1)\rangle$, gerando o espaço $\mathcal{E}_{j_{\text{max}}-1}$.

Passo (2), $j = j_{\text{max}} - 2$: Definimos $|j_{\text{max}} - 2, j_{\text{max}} - 2\rangle$ como o único (módulo fator) vetor no span dos vetores $|j_1\rangle|j_2-2\rangle$, $|j_1-1\rangle|j_2-1\rangle$ e $|j_1-2\rangle|j_2\rangle$ contido em $\mathcal{E}_{j_{\text{max}}}^{\perp} \cap \mathcal{E}_{j_{\text{max}}}^{\perp} \cap \mathcal{E$

...E aí vai até

Passo $(2j_2)$, $j = j_{\text{max}} - 2j_2 = j_1 - j_2$: Definimos $|j_1 - j_2, j_1 - j_2\rangle$ como o único (módulo fator) vetor no span dos vetores $|j_1\rangle|-j_2\rangle$, $|j_1-1\rangle|-j_2+1\rangle$, ..., $|j_1-2j_2\rangle|j_2\rangle$ contido em $\mathcal{E}_{j_{\text{max}}}^{\perp}\cap\ldots\cap\mathcal{E}_{j_1-j_2+1}^{\perp}$ (ou seja, perpendicular nos vetores $|j_{\text{max}}, j_1-j_2\rangle$, ..., $|j_1-j_2+1, j_1-j_2\rangle$, compare rodapé 4). Aplicando o operador de escada J_- e normalizando, gera-se espaço $\mathcal{E}_{j_1-j_2}$.

Aqui, o construção termina, porque não tem mais vetores no espaço. Em outras palavras, temos

$$\mathcal{E} = \bigoplus_{j=|j_1-j_2|}^{j_1+j_2} \mathcal{E}_j, \quad \text{e dim } \mathcal{E}_j = 2j+1.$$

(O limite inferior $|j_1-j_2|$ esta correto para os dois casos $j_1 \leq j_2$ e $j_2 \leq j_1$.) Vamos verificar as dimensões: A dimensõe de $\mathcal{E} = \mathcal{E}_1 \otimes \mathcal{E}_2$ é $(2j_1+1)(2j_2+1)$. A dimensõe do lado direito da equaçõe encima é $\sum_{j=|j_1-j_2|}^{j_1+j_2} (2j+1)$ que dá, depois um pequeno cálculo, o mesmo valor.

Os elementos da BON $|j,m\rangle \equiv |j_1,j_2;j,m\rangle$ em \mathcal{E} (recordamos que j_1,j_2 são fixos!) podem ser expandidos como

$$|j,m\rangle = \sum_{m_1=-j_1}^{j_1} \sum_{m_2=-j_2}^{j_2} \langle m_1, m_2 | j, m \rangle | m_1, m_2 \rangle.$$
 (32)

(Aqui, escrevemos $|m_1, m_2\rangle$ em vez de $|m_1\rangle|m_2\rangle$.) Os coeficientes $\langle m_1, m_2|j, m\rangle$ são chamados de coeficientes de *Clebsch-Gordon*, e podem ser calculadas conforme a construção descrita encima. Essa construção mostra que $\langle m_1, m_2|j, m\rangle$ é diferente de zero só se $m_1 + m_2 = m$ e $|j_1 - j_2| \leq j \leq j_1 + j_2$. Os coeficientes podem ser escolhidos em \mathbb{R} . A inversão das Eq.s (32) dá

$$|m_1, m_2\rangle = \sum_{j=|j_1-j_2|}^{j_1+j_2} \langle j, m|m_1, m_2\rangle |j, m\rangle, \quad m \doteq m_1 + m_2,$$
 (33)

com $\langle j, m | m_1, m_2 \rangle = \overline{\langle m_1, m_2 | j, m \rangle}$

⁵Equivalentemente, $|j-j_1| \le j_2 \le j+j_1$ ou $|j-j_2| \le j_1 \le j+j_2$. Isso é a chamada "triangle selection rule".

2.4 Teorema de Wigner-Eckart

Seja J um operador de momento angular agindo no espaço de Hilbert \mathcal{H} .

Um operador A em \mathcal{H} é chamado de operador escalar se ele comuta com todos os J_k .

Lemma 5 Para um operador escalar A vale

$$\langle k', j', m' | A | k, j, m \rangle = \delta_{j,j'} \delta_{m,m'} a(k, k', j), \tag{34}$$

onde $a(k, k', j) \in \mathbb{C}$ independe de m.

Uma tripla de operadores $V = (V_x, V_y, V_z)$ é chamado de operador vetor se para todo $k, l \in \{x, y, z\}$ vale a relação de comutação

$$[J_k, V_l] = \sum_{m \in \{x, y, z\}} i\hbar \,\varepsilon_{klm} V_m \,. \tag{35}$$

Neste caso, define-se $V_{\pm} \doteq V_x \pm iV_y$.

Teorema 6 (Wigner-Eckart — Caso particular)

$$\langle k', j', m' | V_{\pm} | k, j, m \rangle = 0 \qquad \text{se } m' \neq m \pm 1$$
 (36)

$$\langle k', j', m' | V_z | k, j, m \rangle = 0 \qquad \text{se } m' \neq m. \tag{37}$$

Ademais,

$$\langle k, j, m' | \mathbf{V} | k, j, m \rangle = \alpha(k, j) \langle k, j, m' | \mathbf{J} | k, j, m \rangle$$
 onde (38)

$$\alpha(k,j) = \frac{\langle \boldsymbol{V} \cdot \boldsymbol{J} \rangle_{\phi}}{j(j+1)\hbar^2}.$$
 (39)

Aqui, ϕ é um vetor arbitrário em $\mathcal{E}_{k,j} \doteq span \{|k,j,m\rangle, -j \leq m \leq j\}.$

2.5 Elétron no campo magnético uniforme e elétrico

[1, Vol. 1: D_{VII}]

2.5.1 Generalidades

Clássicamente, o Hamiltoneano de uma partícula de massa m e carga q nos campos $\pmb{E} = -\nabla V - \dot{\pmb{A}}$ e $\pmb{B} = \nabla \times \pmb{A}$ é

$$H = \frac{1}{2m} (\boldsymbol{p} - q\boldsymbol{A}(\boldsymbol{x}))^2 + qV(\boldsymbol{x}). \tag{40}$$

(Pois as equações de Hamilton são equivalentes com $\boldsymbol{p}=m\boldsymbol{v}+q\boldsymbol{A}$ mais a segunda Lei de Newton com a força de Lorentz, $m\ddot{\boldsymbol{x}}=q(\boldsymbol{E}+\dot{\boldsymbol{x}}\times\boldsymbol{B})$.) Na descrição quântica do elétron, usaremos o mesmo Hamiltoneano, substituindo os observáveis pelos operadores correspondentes na representação de Schrödinger: $\boldsymbol{p}\to\boldsymbol{P}=\frac{\hbar}{i}\nabla$, e $\boldsymbol{A}(\boldsymbol{x})\to\boldsymbol{A}(\boldsymbol{X})$, $V(\boldsymbol{x})\to V(\boldsymbol{X})$, agindo como operadores de multiplicação, por exemplo

$$(V(\mathbf{X})\psi)(\mathbf{x}) \doteq V(\mathbf{x}) \psi(\mathbf{x}).$$

No caso de $(\boldsymbol{p}-q\boldsymbol{A})^2$, tem o problema do ordenamento dos operadores P_k e $A_k(\boldsymbol{X})$. Aqui, adotamos a receita simétrica

$$(\mathbf{P} - q\mathbf{A}(\mathbf{X}))^2 \doteq \mathbf{P}^2 + q^2\mathbf{A}^2 - q(\mathbf{P} \cdot \mathbf{A} + \mathbf{A} \cdot \mathbf{P}). \tag{41}$$

(Essa receita pode ser justificada só pelo sucesso.)

O spin do elétron também interage com o campo magnético, através do potencial $-\boldsymbol{\mu} \cdot \boldsymbol{B}$, onde $\boldsymbol{\mu}$ é o momento de dipolo magnético associado com o spin. Da experiência de Stern-Gerlach sabemos que para spin 1/2, o momento de dipólo magnético é $\boldsymbol{\mu} = \frac{q}{m} \boldsymbol{S}$, onde $\boldsymbol{S} = (S_x, S_y, S_z)$ são os operadores do spin agindo em \mathbb{C}^2 . Resumindo, o Hamiltoniano descrevendo o elétron no campo elétromagnetico é

$$H = \frac{1}{2m}(\mathbf{P} - q\mathbf{A})^2 + qV - \frac{q}{m}\mathbf{S} \cdot \mathbf{B}, \qquad (42)$$

entendendo A, V e B como operadores de multiplicação e entendendo a simetrização (41). A equação de Schrödinger correspondente é a Equação de Pauli.

No seguinte, consideramos um campo magnético uniforme, $\mathbf{B} = B\mathbf{n}$. O potencial vetor pode ser escolhido como $\mathbf{A} \doteq \frac{1}{2}\mathbf{B} \times \mathbf{X}$, pois

$$\nabla \times \frac{1}{2}(\boldsymbol{B} \times \boldsymbol{x}) = \frac{1}{2} \big[(\nabla \cdot \boldsymbol{x}) \boldsymbol{B} - (\boldsymbol{B} \cdot \nabla) \boldsymbol{x} \big] = \frac{1}{2} [3\boldsymbol{B} - \boldsymbol{B}] = \boldsymbol{B}.$$

Com essa escolha, calcula-se

$$\mathbf{P} \cdot \mathbf{A} = \frac{1}{2} \mathbf{P} \cdot (\mathbf{B} \times \mathbf{X}) = \frac{1}{2} \mathbf{B} \cdot (\mathbf{X} \times \mathbf{P}) = \frac{1}{2} \mathbf{B} \cdot \mathbf{L},$$
 (43)

$$\mathbf{A} \cdot \mathbf{P} = \frac{1}{2} (\mathbf{B} \times \mathbf{X}) \cdot \mathbf{P} = \frac{1}{2} (\mathbf{X} \times \mathbf{P}) \cdot \mathbf{B} = \frac{1}{2} \mathbf{B} \cdot \mathbf{L},$$
(44)

onde $L = X \times P$ é o momento angular orbital. (Observe que L comuta com B pois B é constante.) Resumindo, temos

$$H = H_0 + H_1 + H_2 + H_s \quad \text{com} \tag{45}$$

$$H_0 = \frac{1}{2m} \mathbf{P}^2 + qV,$$
 $H_2 = \frac{q^2}{2m} \mathbf{A}^2$ (46)

$$H_1 = -\frac{q}{2m} \mathbf{B} \cdot \mathbf{L}, \qquad H_s = -\frac{q}{m} \mathbf{B} \cdot \mathbf{S}. \tag{47}$$

Para discutir as ordens de grandeza dos termos, introduzimos o magneton de Bohr μ_B e a frequência de Larmor ω_L ,

$$\mu_B \doteq \frac{q\hbar}{2m} < 0, \quad \omega_L \doteq \frac{|q|B}{2m}.$$

Observe que para o elétron, a carga q e consequentemente μ_B são negativos.

⁶Tomando em consideração..., vale $\mu = g \frac{q}{2m} S$, com g = 2,00023... o fator giromagnético.

Efeito Zeeman "normal" 2.5.2

Literatura: $[1, D_{VII}, p. 835]$. Consideramos o átomo de H no campo B homogêneo, desprezando o spin. O campo B deforma as frequências e as polarizações das linhas atómicas. Para analisar a mudânca de frequências consideremos as auto-energias. Já para analisar as polarizações, vamos considerar o valor esperado do momento de dipolo, $D \doteq qX$, numa superposição dos dois estados que participam na linha atómica considerada. Esse valor esperado oscila. Analisaremos a radiação produzida por um dipolo clássico oscilante $d(t) \doteq \langle D \rangle_t$, e supomos (como [1] faz) que ela tem a mesma caraterística como a luz emitida espontâneamente na transição entre os dois estados. Isso vale aproximadamente, porém, vale enfatizar que a emissão espontânea é outra coisa e deve ser tratada pela EDQ, enquanto que nosso modelo do elétron, fixado pelo Hamiltoneano (42), $n\tilde{a}o$ prevé nenhuma radiação (ou outra perda de energia)!

Desprezando H_2 e o spin, temos $H = H_0 + H_1$. Na BON $\phi_{nlm} = |nlm\rangle$ temos

$$H_0\phi_{nlm} = E_n \cdot \phi_{nlm}$$

$$H_1\phi_{nlm} \equiv \omega_L L_z \phi_{nlm} = m\hbar\omega_L \cdot \phi_{nlm}$$

$$H\phi_{nlm} = (E_n + m\hbar\omega_L) \cdot \phi_{nlm}$$

(Degenerescência removida!) Consideramos em particular a transição $(1s) \rightarrow (2p)$, ou seja $\phi_{100} \to \phi_{21m}$ (a chamada linha de ressonância).

$$H\phi_{100} = E_1 \cdot \phi_{100}, \qquad H\phi_{21m} = (E_2 + m\hbar\omega_L)) \cdot \phi_{21m}.$$
 (48)

A diferênça de frequências é $\Delta \nu = \Omega + m\omega_L$, onde $\Omega \doteq (E_2 - E_1)/\hbar$ é a diferência de frequências sem campo B. (Lembrando que $E_1 = -E_I \cong -13$ eV, e $E_2 = \frac{1}{4}E_1$, temos $\Omega = \frac{3}{4\hbar} E_I$.)

Para determinar as polarizações, consideramos o valor esperado do operador do momento de dipólo (??) no estado inicialmente descrito por $\psi^m \doteq c_1 \phi_{100} + c_2 \phi_{21m}$. A solução da equação de Schrödinger com essa condição inicial é

$$\psi_t^m = c_1 e^{-it\omega_1} \phi_{100} + c_2 e^{-it\omega_2^m} \phi_{21m} , \quad \omega_1 \doteq E_1/\hbar, \ \omega_2 \doteq E_2/\hbar, \ \omega_2^m \doteq \omega_2 + m\omega_L .$$
 (49)

Lemma 7 Vale

$$\langle 100|\boldsymbol{D}|100\rangle = 0, \qquad \langle 21m'|\boldsymbol{D}|21m\rangle = 0 \qquad (50)$$

$$\langle 100|D_{x,y}|nl0\rangle = 0, \qquad \langle n'l'm'|D_z|nlm\rangle = 0, \quad se \ m' \neq m. \qquad (51)$$

$$\langle 100|D_{x,y}|nl0\rangle = 0, \qquad \langle n'l'm'|D_z|nlm\rangle = 0, \text{ se } m' \neq m.$$
 (51)

Comprovante. Isso é parcialmente consequência do Teorema de Wigner-Eckart: A Eq. (51) segue da Eq. (36) do Teorema e o fato que D_x, D_y são combinações limeares de D_+, D_- . A equação esquerda em (50) segue da Eq. (38) e do fato que $\langle 100|\mathbf{L}|100\rangle = 0$. A equação direita em (50) pode ser mostrado usando a noção de paridade. O operador paridade Π é definido, na representação de Schrödinger, por

$$(\Pi\psi)(\boldsymbol{x}) \doteq \psi(-\boldsymbol{x}).$$

Ele é hermiteano e unitário, $\Pi^{-1} = \Pi = \Pi^*$. Chamamos um vetor ψ de par/impar se $\Pi \psi = \pm \psi$, e chamamos um operador A de par/impar se $\Pi^{-1}A\Pi = \pm A$. Os esféricos

harmônicos Y_{lm} tem paridade $\Pi Y_{lm} = (-1)^l Y_{lm}$, e o mesmo vale para os ϕ_{nlm} . Por outro lado, os componentes do operador multiplicação X são impares, eg. $\Pi^{-1}Z\Pi = -Z$. Daí,

$$(\phi_{nlm'}, Z\phi_{nlm}) \equiv (-1)^{2l} (\Pi\phi_{nlm'}, Z\Pi\phi_{nlm}) = (\phi_{nlm'}, \Pi^{-1}Z\Pi\phi_{nlm}) = -(\phi_{nlm'}, Z\phi_{nlm}),$$

daí
$$(\phi_{nlm'}, Z\phi_{nlm}) = 0$$
. Similar para os componentes $X \in Y$.

Calcula-se também [1, p. 387]

$$\langle 100|X|211\rangle = -\langle 100|X|21, -1\rangle = -\frac{\chi}{\sqrt{6}}$$
 (52)

$$\langle 100|Y|211\rangle = \langle 100|Y|21, -1\rangle = -i\frac{\chi}{\sqrt{6}} \tag{53}$$

$$\langle 100|Z|210\rangle = \frac{\chi}{\sqrt{3}}\,,\tag{54}$$

onde $\chi \doteq (R_{10}, rR_{21}) = \int_0^\infty dr r^3 \overline{R_{10}(r)} R_{21}(r)$. As Eq.s (50) – (54) implican

$$\langle 100|\mathbf{D}|210\rangle = q\frac{\chi}{\sqrt{3}}\,\hat{z}\tag{55}$$

$$\langle 100|\mathbf{D}|211\rangle = -q\frac{\chi}{\sqrt{6}}\left(\hat{x} + i\hat{y}\right) \tag{56}$$

$$\langle 100|\mathbf{D}|21, -1\rangle = q\frac{\chi}{\sqrt{6}} \left(\hat{x} - i\hat{y}\right) \tag{57}$$

A evolução temporal do valor esparado é

$$\langle \boldsymbol{D} \rangle_{\psi_t^m} = 2\Re \left[c e^{-it(\omega_2^m - \omega_1)} \langle 100 | \boldsymbol{D} | 21m \rangle \right], \quad c \doteq \bar{c}_1 c_2.$$

Supondo que $c_1, c_2 \in \mathbb{R}$, e escrevendo $\omega_2^m - \omega_1 = \Omega + m\omega_L$ com $\Omega \doteq \omega_2 - \omega_1$, temos

$$\langle \mathbf{D} \rangle_{\psi_t^0} = 2qc \frac{\chi}{\sqrt{3}} \cos(\Omega t) \hat{z}$$
 (58)

$$\langle \mathbf{D} \rangle_{\psi_t^1} = -2qc \frac{\chi}{\sqrt{6}} \left[\cos \left((\Omega + \omega_L) t \right) \hat{x} + \sin \left((\Omega + \omega_L) t \right) \hat{y} \right]$$
 (59)

$$\langle \mathbf{D} \rangle_{\psi_t^{-1}} = 2qc \frac{\chi}{\sqrt{6}} \left[\cos \left((\Omega - \omega_L) t \right) \hat{x} - \sin \left((\Omega - \omega_L) t \right) \hat{y} \right]$$
 (60)

A radiação produzida por um dipolo clássico oscilante $d(t) \doteq \langle \mathbf{D} \rangle_{\psi_t^m}$ tem as seguintes propriedades: Para m=0, a luz emitida é polarizada linearmente; a intensidade é maximal nas direções perpendiculares a \hat{z} , e zero na direção \hat{z} . Para $m=\pm 1$, a luz emitida é polarizada elípticamente, em particular: A polarização é circular na direção \hat{z} e linear nas direções perpendiculares a \hat{z} .

A linha de ressonância do átomo de hidrogênio é mais complexa devido ao spin do elétron e pósitron (estrutura fina e híperfina), porém qualitativamente os resultados obtidos aqui coincidem com as obervações.

2.5.3 Fator de Landé

 $[1, D_X.3]$

2.5.4 Acoplamento J-J

Literatura: [1, F_X]. Consideramos dois momenta angulares $J_{(\nu)}$ agindo nos espaços de Hilbert respetivos \mathcal{H}_{ν} , $\nu=1,2$. Eles adicionam um interação da forma

$$H_1 \doteq a \boldsymbol{J}_{(1)} \cdot \boldsymbol{J}_{(2)}$$

ao Hamiltoneano. Clássicamente, a evolução temporal desse acoplamento é dada por

$$\frac{d}{dt}\boldsymbol{J}_{(1)} = a\boldsymbol{J} \times \boldsymbol{J}_{(1)}. \tag{61}$$

com $|\boldsymbol{J}_{(1)}|, |\boldsymbol{J}_{(2)}|, \boldsymbol{J}_{(1)} \cdot \boldsymbol{J}_{(1)}$ e \boldsymbol{J} constantes. Isso é uma precessão dos vetores $\boldsymbol{J}_{(1)}$ e $\boldsymbol{J}_{(2)}$ em torno do momento total $\boldsymbol{J} \doteq \boldsymbol{J}_{(1)} + \boldsymbol{J}_{(2)}$ (que por sua vez é constante).

Na MQ, vampos supor que o Hamiltoneano total seja $H_0 + H_1$, onde H_0 comuta com os momenta angulares $J_{(\nu)}$. Nesse caso, a evolução temporal do valor esperado é dada por

$$\frac{d}{dt}\langle \boldsymbol{J}_{(1)}\rangle_t = \frac{1}{i\hbar}\langle \left[\boldsymbol{J}_{(1)}, H_1\right]\rangle_t = \cdots = -a\langle \boldsymbol{J}_{(1)} \times \boldsymbol{J}_{(2)}\rangle_t = a\langle \boldsymbol{J} \times \boldsymbol{J}_{(1)}\rangle_t.$$

Isso difere da evolução clássica (61) em que $\langle \boldsymbol{J} \times \boldsymbol{J}_{(1)} \rangle \neq \langle \boldsymbol{J} \rangle \times \langle \boldsymbol{J}_{(1)} \rangle$ em geral. [1]: ...

3 Teoria de perturbação independente de tempo

3.1 O método

Consideramos um Hamiltoniano da forma $H = H_0 + W$, H_0 e W auto-adjuntos, onde nos conhecemos a diagonalização de H_0 , mas não de H. A tarefa é achar aproximadamente os autovalores e autovetores de H por um algorismo iterativo.

O termo H_0 será chamado de "Hamiltoniano livre", e o termo W de "perturbação". Seja $\{\varphi_{n,i} \mid n \in \mathbb{N}, i = 1, \dots, d_n\}$ uma BON de autovetores⁷ do Hamiltoniano livre H_0 com auto-valores respectivos $E_n^{(0)}$:

$$H_0 \,\varphi_{n,i} = E_n^{(0)} \,\varphi_{n,i}. \tag{62}$$

Para achar os auto-vetores e auto-valores do Hamiltoniano $H = H_0 + W$, definimos

$$H(\lambda) \doteq H_0 + \lambda W, \qquad \lambda \in [0, 1],$$
 (63)

e tentamos resolver, para cada $\lambda \in [0, 1]$, a equação

$$H(\lambda) \psi(\lambda) = E(\lambda) \psi(\lambda). \tag{64}$$

A hypótese crucial é que $E(\lambda)$ e $\psi(\lambda)$ dependem analíticamente de λ , permitindo as expansões

$$E(\lambda) = E^{(0)} + \lambda E^{(1)} + \lambda^2 E^{(2)} + \dots, \qquad \psi(\lambda) = \psi^{(0)} + \lambda \psi^{(1)} + \lambda^2 \psi^{(2)} + \dots$$
 (65)

⁷Discutimos o caso discreto de auto*vetores* (e não vetores generalizados), ou seja, o caso de estados ligados, veja a discussão depois do teorema espectral em [4, p. 22].

Substituindo na Eq. (64), os dois lados dessa equaço viram

$$H(\lambda) \psi(\lambda) = H_0 \psi^{(0)} + \lambda (H_0 \psi^{(1)} + W \psi^{(0)}) + \dots + \lambda^{\nu} (H_0 \psi^{(\nu)} + W \psi^{(\nu-1)}) + \dots$$

$$E(\lambda) \psi(\lambda) = E^{(0)} \psi^{(0)} + \lambda (E^{(0)} \psi^{(1)} + E^{(1)} \psi^{(0)}) + \dots + \lambda^{\nu} (E^{(0)} \psi^{(\nu)} + \dots + E^{(\nu)} \psi^{(0)}) + \dots$$

Comparando termo a termo, resulta na sequência de equações

$$(H_0 - E^{(0)}) \psi^{(0)} = 0 (66)$$

$$(H_0 - E^{(0)}) \psi^{(1)} = -(W - E^{(1)}) \psi^{(0)}$$
(67)

$$(H_0 - E^{(0)}) \psi^{(2)} = -(W - E^{(1)}) \psi^{(1)} + E^{(2)} \psi^{(0)}, \tag{68}$$

e em ν -esima ordem

$$(H_0 - E^{(0)})\psi^{(\nu)} = -(W - E^{(1)})\psi^{(\nu-1)} + E^{(2)}\psi^{(\nu-2)} + \dots + E^{(\nu)}\psi^{(0)}.$$
 (69)

Eq. (66) quer dizer que $\psi^{(0)}$ é um dos auto-vetores de H_0 e $E^{(0)}$ é a auto-energia correspondente. Supomos que $\psi^{(0)}$ seja normalizado, e que $E^{(0)}$ é a n-esima auto-energia, $E^{(0)}=E_n^{(0)}$. Então $\psi^{(0)}$ deve ser contido no auto-espaço correspondente,

$$\mathcal{E}_n \doteq \{ \psi \in \mathcal{H} \mid H_0 \psi = E_n^{(0)} \psi \} \equiv \operatorname{span} \{ \varphi_{n,i} \mid i = 1, \dots, d_n \}.$$

Denotamos por P_n o projetor sobre esse espaço. Aplicando esse projetor nos dois lados da Eq. (67) e observando que ele anula o lado esquerdo, resulta em

$$(P_n W P_n - E^{(1)}) \psi^{(0)} = 0. (70)$$

(Aquí também usamos que $P_n\psi^{(0)} = \psi^{(0)}$.) Em outras palávras, $\psi^{(0)}$ não é apenas qualquer auto-vetor de H_0 em \mathcal{E}_n , mas também é um auto-vetor de P_nWP_n (a restrição de W no subespaço \mathcal{E}_n), e $E^{(1)}$ é o auto-valor correspondente.

Com isso, $E^{(0)}$, $\psi^{(0)}$ e $E^{(1)}$ são determinados. Para determinar $\psi^{(1)}$, aplicamos o projetor sobre o complemento ortogonal de \mathcal{E}_n ,

$$P_n^{\perp} \doteq \mathbb{1} - P_n$$

na Eq. (67). Isso resulta em

$$(H_0 - E^{(0)}) P_n^{\perp} \psi^{(1)} = -P_n^{\perp} W \psi^{(0)}$$

(No lado esquerdo, usamos que P_n^{\perp} comuta com H_0 , e no lado direito usamos que $P_n^{\perp}\psi^{(0)}=0$.) Mas no complemento ortogonal de \mathcal{E}_n o operador $H_0-E^{(0)}$ é invertível; então temos

$$P_n^{\perp} \psi^{(1)} = -(H_0 - E^{(0)})^{-1} P_n^{\perp} W \psi^{(0)}$$
(71)

$$\equiv -\sum_{n'\neq n} \sum_{i=1}^{d_{n'}} (E_{n'}^{(0)} - E_n^{(0)})^{-1} (\varphi_{n',i}, W\psi^{(0)}) \varphi_{n',i}.$$
 (72)

A componente de $\psi^{(1)}$ em \mathcal{E}_n , $P_n\psi^{(1)}$, fica indeterminada em geral (mas no caso não-degenerado pode ser fixada por convenções, ver abaixo).

Para determinar $E^{(2)}$, fazemos o produto escalar dos dois lados da Eq. (68) com $\psi^{(0)}$. Observando que o lado esquerdo dá zero e que $\psi^{(0)}$ é normalizado, isso resultando na equação

$$E^{(2)} = (\psi^{(0)}, (W - E^{(1)})\psi^{(1)})$$

$$= (\psi^{(0)}, (W - E^{(1)})P_n^{\perp}\psi^{(1)}) + (\psi^{(0)}, (W - E^{(1)})P_n\psi^{(1)})$$

$$= (\psi^{(0)}, (W - E^{(1)})P_n^{\perp}\psi^{(1)}) \stackrel{\text{(a)}}{=} (\psi^{(0)}, WP_n^{\perp}\psi^{(1)}). \tag{73}$$

Na segunda equação inserimos $P_n + P_n^{\perp} = \mathbb{1}$. O segundo termo na segunda linha se anula por causa da Eq. (70),

$$(\psi^{(0)}, (W - E^{(1)})P_n\psi^{(1)}) = (P_n(W - E^{(1)})\psi^{(0)}, \psi^{(1)}) = 0$$

(observando que P_n e W são operadores auto-adjuntos). Na última equação, (73) (a), observamos que o termo com $E^{(1)}$ não contribui devido ao fato $(\psi^{(0)}, P_n^{\perp}\psi^{(1)}) \equiv (P_n^{\perp}\psi^{(0)}, \psi^{(1)}) = 0$. Substituindo as Eqs. (71) e (72), respetivamente, obtemos

$$E^{(2)} = -(W\psi^{(0)}, (H_0 - E^{(0)})^{-1} P_n^{\perp} W \psi^{(0)})$$
(74)

$$\equiv -\sum_{n'\neq n} \sum_{i=1}^{d_{n'}} (E_{n'}^{(0)} - E_n^{(0)})^{-1} | (\varphi_{n',i}, W\psi^{(0)}) |^2.$$
 (75)

Para determinar $\psi^{(2)}$, aplicamos P_n^{\perp} na equação (68), dando

$$P_n^{\perp} \psi^{(2)} = -(H_0 - E^{(0)})^{-1} P_n^{\perp} (W - E^{(1)}) \psi^{(1)}. \tag{76}$$

Porém, a componente $P_n\psi^{(2)}$ não é determinada. Para adiantar, consideramos

O caso não-degenerado ($d_n = 1$). No caso não-degenerado, as componentes dos $\psi^{(\nu)}$ em \mathcal{E}_n , $P_n\psi^{(\nu)} \equiv (\psi^{(0)},\psi^{(\nu)})\,\psi^{(0)}$, são fixadas pela convenção de normalização. Nos adotamos a seguinte condição de normalização

$$(\psi(0), \psi(\lambda)) = 1 \qquad \forall \lambda \in [0, 1]. \tag{77}$$

(Pode ser satisfeita: Exercício! Aviso: O Cohen-Tannoudji usa a condição de normalização que $\|\psi(\lambda)\| = 1!$) Como se verifica facilmente, isso é equivalente a

$$\left(\psi^{(0)}, \psi^{(\nu)}\right) = \delta_{0,\nu} \qquad \forall \nu \in \mathbb{N}_0, \tag{78}$$

o que implica $P_n\psi^{(\nu)}=0$ ou seja, $P_n^\perp\psi^{(\nu)}=\psi^{(\nu)}$ para $\nu\geq 1$.

Agora a Eq. (70) vira simplesmente

$$E^{(1)} = (\psi^{(0)}, W\psi^{(0)}). \tag{79}$$

O vetor $\psi^{(1)}$ é completamente determinado, a saber, dado pela Eq. (71). Também o lado esquerdo da Eq. (76) é justamente $\psi^{(2)}$:

$$\psi^{(2)} = -(H_0 - E_n^{(0)})^{-1} P_n^{\perp} (W - E_n^{(1)}) \psi^{(1)}.$$
(80)

Analogamente, aplicando o projetor P_n^\perp em (69), obtem-se para $\nu>2$

$$\psi^{(\nu)} = (H_0 - E_n^{(0)})^{-1} \left\{ -P_n^{\perp} (W - E_n^{(1)}) \psi^{(\nu-1)} + E^{(2)} \psi^{(\nu-2)} + \dots + E^{(\nu-1)} \psi^{(1)} \right\}. \tag{81}$$

Para a energia na ν -esima ordem ($\nu > 2$), fazemos o produto escalar dos dois lados da Eq. (69) com $\psi^{(0)}$. Usando a condição (78), obtemos

$$E^{(\nu)} = (\psi^{(0)}, W\psi^{(\nu-1)}). \tag{82}$$

Com isso, a Eq. (64) pode ser resolvida até qualquer ordem ν , a saber, determinando consecutivamente $E^{(1)}$, $\psi^{(1)}$, $E^{(2)}$, $\psi^{(2)}$, etc., até $E^{(\nu)}$, $\psi^{(\nu)}$.

3.2 Método variacional

Seja H o nosso Hamiltoneano. A aplicação $\psi \mapsto \langle H \rangle_{\psi}$ (valor esperado) é um funcional não-linear de \mathcal{H} nos números reais.

Definição 8 Seja F uma aplicação de \mathcal{H} em \mathbb{C} (um funcional), e $\psi \in \mathcal{H}$.

i) A derivada de F em ψ , em símbolos $DF(\psi)$, é a aplicação (funcional) linear de \mathcal{H} em \mathbb{C} , $DF(\psi): \chi \mapsto \langle DF(\psi), \chi \rangle$ definida por

$$\langle DF(\psi), \chi \rangle \doteq \frac{d}{ds} F(\psi + s\chi)|_{s=0}.$$

ii) ψ é um ponto estacionário de F se a derivada de F em ψ é nula, ou seja, se para todos $\chi \in \mathcal{H}$ vale $\frac{d}{ds}F(\psi+s\chi)|_{s=0}=0$.

Teorema 9 (Ritz) Seja H um operador auto-adjunto. O funcional $\phi \mapsto \langle H \rangle_{\phi}$ (definido no domínio de H) é estacionário em ψ se e somente se ψ é um autovetor de H.

Comprovante. A direção " \Leftarrow " é obvia. Para mostrar " \Rightarrow ", vamos supor que o valor esperado seja estacionário em ψ . Usando a regra de quociente para derivada, chegamos em

$$\frac{d}{ds}\langle H\rangle_{\psi+s\chi}|_{s=0} = \frac{2\Re(\psi,H\chi)\|\psi\|^2 - (\psi,H\psi)2\Re(\psi,\chi)}{\|\psi\|^4}.$$

Por hipótese, isso é zero para todos χ . Substituindo χ por $i\chi$, e usando o fato que H é auto-adjunto, isso implica $(H\psi,\chi) = \langle H \rangle_{\psi} (\psi,\chi)$ para todos χ , que por sua vez implica conclusão do teorema, com autovalor correspondente $E = \langle H \rangle_{\psi}$.

Princípio Minimax. Vamos supor que o Hamiltoneano possui espectro puramente discreto, ou seja, que existe uma BON de autovetores φ_n com $H\varphi_n=E_n\cdot\varphi_n$. (Aqui denotamos o autovalor com o mesmo índicie como o vetor: No caso de degenerescência pode acontcer que $E_n=E_{n'}$ para $n\neq n'$.) Vamos ordenar os auto-valores E_n tal que $E_0\leq E_1\leq E_2\leq\ldots$ Mostra-se facilmente que a energia fundamental E_0 é dada pelo ínfimo dos valores esperados,

$$E_0 = \inf_{\psi \in D(H)} \langle H \rangle_{\psi} \,. \tag{83}$$

(Aqui, D(H) denota o domínio do operador H.) Se φ_0 é conhecido, o próximo autovalor E_1 pode ser encontrado pelo mesmo método, aplicado no complemento ortogonal de φ_0 :

$$E_1 = \inf_{\psi \in \varphi_0^{\perp}} \langle H \rangle_{\psi} \,. \tag{84}$$

(Deixamos de anotar que ψ também deve fiacr no domínio de H.) Mas até sem conhecer o autovetor φ_0 dá para encontrar o autovalor E_1 : Parar todo $\phi \in \mathcal{H}$ vale (exercício!)

$$\inf_{\psi \in \phi^{\perp}} \langle H \rangle_{\psi} \le \inf_{\psi \in \varphi_0^{\perp}} \langle H \rangle_{\psi} .$$

Conclue-se que

$$E_1 = \sup_{\phi \in \mathcal{H}} \inf_{\psi \in \phi^{\perp}} \langle H \rangle_{\psi} . \tag{85}$$

Isso é o princípio minimax. Similarmente, mostra-se para todo n:

$$E_n = \sup_{\phi_1, \dots, \phi_n \in \mathcal{H}} \inf_{\psi \in \langle \phi_1, \dots, \phi_n \rangle^{\perp}} \langle H \rangle_{\psi} , \qquad (86)$$

onde $\langle \phi_1, \dots, \phi_n \rangle^{\perp}$ é o complemento ortogonal do span dos vetores ϕ_1, \dots, ϕ_n .

3.3 Exemplos: Estrutura fina e hiperfina do átomo de hidrogêneo

4 Teoria de perturbação dependente de tempo

Consideramos um Hamiltoneano dependente do tempo H(t), e procuramos a solução da equação de Schrödinger

$$i\hbar \frac{d}{dt}\psi_t = H(t)\psi_t. \tag{87}$$

Nesse caso, não é suficiente achar os auto-valores e vetores de cada H(t). Um método perturbativo de achar soluções aproximativas é a série de Dyson, veja Seção 4.1. Ela funciona bem quando H(t) é da forma

$$H(t) = H_0 + W(t),$$
 (88)

onde W(t) é uma família de operadores auto-adjuntos, e a diagonalização de H_0 é conhecida. Nesse caso, a Série de Dyson será aplicada no chamado cenario de interação, veja Seção 4.2.

4.1 Série de Dyson

Literatura: Messiah, Vol. II, Cap. XVIII.

Proposição 10 Seja H(t) uma família de operadores auto-adjuntos satisfazendo certas condições [6]. Então a solução ψ_t da Equação de Schrödinger (87), com ψ_0 dado, é unica. Ela é da forma $\psi_t = U(t,0) \psi_0$, onde U(t,s), $s,t \in \mathbb{R}$, é uma família de operadores unitários com as seguintes propriedades:

$$i\hbar \frac{d}{dt}U(t,s) = H(t) \circ U(t,s) \tag{89}$$

$$U(t,t) = 1, (90)$$

$$U(t,r) \circ U(r,s) = U(t,s) \tag{91}$$

para todo $t, r, s \in \mathbb{R}$.

Observe que essas relações implicam $U(t,s)^{-1} = U(s,t)$ e

$$i\hbar \frac{d}{dt}U(s,t) = -U(s,t) \circ H(t). \tag{92}$$

A EDO (89) com condição inicial (90) possui uma única solução, e ela satisfaz a relação (91). Reciprocamente, a relação (91), sob a condição apropriada de diferencia-bilidade, implica na EDO (89). (Exercício: Como definir H(t)?)

Uma tal família $\{U(t,s)\}_{t,s\in\mathbb{R}}$ é chamada de familia de propagadores ou evolução temporal para a família H(t).

Uma solução formal da EDO (89) com condição inicial (90) é dada pela série de Dyson,

$$U(t,s) = 1 + \sum_{n=1}^{\infty} \frac{1}{(i\hbar)^n} \int_s^t dt_1 \int_s^{t_1} dt_2 \cdots \int_s^{t_{n-1}} dt_n H(t_1) \cdots H(t_n)$$

$$= 1 + \sum_{n=1}^{\infty} \frac{(-i/\hbar)^n}{n!} \int_s^t dt_1 \cdots \int_s^t dt_n T[H(t_1) \cdots H(t_n)]. \tag{93}$$

Aqui, T[...] é o produto temporalmente ordenado,

$$T[H(t_1)\cdots H(t_n)] \doteq H(t_{\pi(1)})\cdots H(t_{\pi(n)})$$
(94)

quando π é uma permutação tal que $t_{\pi(1)} \geq t_{\pi(2)} \cdots \geq t_{\pi(n)}$. Obviamente, isso é uma função totalmente simmétrica em t_1, \ldots, t_n : $T[H(t_1) \cdots H(t_n)] = T[H(t_{\sigma(1)}) \cdots H(t_{\sigma(n)})]$ para qualquer permutação σ . Na Eq. (93) temos usado que para uma função f totalmente simétrica vale

$$\int_{t_1,\dots,t_n\in[s,t]} d^n\underline{t}\,f(\underline{t}) \equiv \sum_{\pi\in S_n} \int_{t_{\pi(1)}\geq\dots\geq t_{\pi(n)}} d^n\underline{t}\,f(\underline{t}) \stackrel{(a)}{=} \sum_{\pi\in S_n} \int_{t_1\geq\dots\geq t_n} d^n\underline{t}\,f(\underline{t}) = n! \int_{t_1\geq\dots\geq t_n} d^n\underline{t}\,f(\underline{t}) \,.$$

(A equação (a) vale por causa da simmetria.) Porém, para grandes |t - s|, os primeiros termos dessa série $n\tilde{a}o$ são uma boa aproximação: Por exemplo, se H é constante, temos

$$U(t,s) = e^{-i(t-s)H/\hbar} = 1 - \frac{i}{\hbar}(t-s)H + \cdots,$$

que é uma péssima aproximação. Isso melhora em situações quando H(t) é da forma (88) e nos "subtraimos" a evolução livre descrita por H_0 :

4.2 Cenário de interação

Consideramos uma família H(t) da forma (88). No princípio, H_0 pode também depender do tempo. Denotamos por U(t,s) a evolução temporal para H(t), e denotamos por $U_0(t,s)$ a evolução temporal para H_0 . A evolução temporal no cenârio de interação é definida por

$$U^{I}(t,s) \doteq U_{0}(0,t) U(t,s) U_{0}(s,0). \tag{95}$$

É simples verificar que e essa família satisfaz as relações (90) e (91). Consequentemente, ela deve ser a evolução temporal para alguma família de Hamiltonianas. Vamos calculá-las:

Usando as EDO's (89) e (92) temos

$$i\hbar \frac{d}{dt}U^{I}(t,s) = U_{0}(0,t)(-H_{0} + H(t))U(t,s)U_{0}(s,0)$$
 (96)

$$\equiv W^{I}(t) U^{I}(t,s), \qquad \text{onde}$$
 (97)

$$W^{I}(t) \doteq U_{0}(0,t)W(t) U_{0}(t,0). \tag{98}$$

Concluímos que a família $U^I(t,s)$ é a evolução temporal para $W^I(t)$, definido encima.

Observe que no caso quado H_0 independe de t, temos $U_0(t,0) = e^{-itH_0/\hbar}$ e $U_0(0,t) = e^{itH_0/\hbar}$, e consequentemente

$$W^{I}(t) = e^{itH_0/\hbar} W(t) e^{-itH_0/\hbar}$$
.

Probabilidades de transição. Sejam φ_n os autovetores de H_0 com respetivos autovalores E_n , $H_0\varphi_n=E_n\varphi_n$. Queremos calcular a probabilidade $P_{i\to n}$ de transição de um estado inicial φ_i para um estado final φ_n sob a evolução temporal completa descrita por um Hamiltoneano da forma (88), $H(t)=H_0+W(t)$. Mais explicitamente, seja ψ_t o estado do sistema no tempo t, evoluindo conforme H(t). Consideramos que o sistema inicialmente está no estado φ_i , $\psi_0=\varphi_i$. Temos então

$$\psi_t = U(t,0)\varphi_i\,,$$

onde U(t,s) é a evolução temporal para H(t). Queremos calcular a probabilidade de transição

$$P_{i\to n}(t) \doteq |(\varphi_n, \psi_t)|^2 = |(\varphi_n, U(t, 0)\varphi_i)|^2 = |(U_0(t, 0)^*\varphi_n, U^I(t, 0)\varphi_i)|^2.$$
 (99)

Na última equação escremos $U(t,0)=U_0(t,0)U^I(t,0)$, e jogamos o primeiro fator ao outro lado do produto escalar. Usando $U_0(t,0)^*\varphi_n=e^{itH_0/\hbar}\varphi_n=e^{itE_n/\hbar}\varphi_n$, chegamos em

$$P_{i \to n}(t) = |(\varphi_n, U^I(t, 0)\varphi_i)|^2.$$
(100)

Como U^I é a evolução temporal para $W^I(t) \equiv e^{itH_0/\hbar}\,W(t)\,e^{-itH_0/\hbar},$ a série de Dyson dá

$$(\varphi_n, U^I(t,0)\varphi_i) = \delta_{ni} - \frac{i}{\hbar} \int_0^t dt' e^{it'(E_n - E_i)/\hbar} (\varphi_n, W(t')\varphi_i) + \dots$$
 (101)

Para $n \neq i$ concluimos

$$P_{i\to n}(t) = \frac{1}{\hbar^2} \left| \int_0^t dt' e^{it'\omega_{ni}(t')} \left(\varphi_n, W(t')\varphi_i \right) \right|^2 + \dots$$
 (102)

(mais termos da ordem W^3), onde $\omega_{ni}(t) \doteq (E_n - E_i)/\hbar$. Essa aproximação é boa se

$$\frac{|t|}{\hbar} |(\varphi_n, W(t')\varphi_i)| \ll 1.$$

4.3 Absorção e emissão induzida

4.4 Regra de ouro de Fermi

Consideramos um Hamiltoneano H_0 cuja decomposição espectral possui uma parte discreta $\mathcal{H}_p(H_0)$ e uma parte absolutamente contínua $\mathcal{H}_{ac}(H_0)$. A parte discreta correspondente aos estados ligados, e a parte $\mathcal{H}_{ac}(H_0)$ correspondente aos estados de espalhamento, veja Teorema 12. Queremos discutir a situação quando um estado ligado evolui com o tempo, por uma perturbação W da dinâmica, num estado de espalhamento.

Recordamos que o espaço de estados de espalhamento é gerado por uma BON contínua de autovetores impróprios [3,4] $\{\chi_{k,j}, k \in \Omega \subset \mathbb{R}^n, j=1,\ldots,d(k)\}$ do Hamiltoniano H,

$$\int_{\Omega} d^n k \sum_{j=1}^n |\chi_{k,j}\rangle \langle \chi_{k,j}| = 1 , \qquad H\chi_{k,j} = E(k) \cdot \chi_{k,j} .$$

Pegamos E(k) como uma das coordenadas em Ω , fazemos transformação de variáveis $(k,j) \to (E,\beta)$ e escrevemos $\chi_{k,j} = |E,\beta\rangle$. Com isso, temos

$$\int_0^\infty dE \int_{\Omega'} d^{n'} \beta \, \varrho(E, \beta) \, |E, \beta\rangle \langle E, \beta| = 1 \quad , \qquad H|E, \beta\rangle = E \cdot |E, \beta\rangle \, ,$$

onde $\varrho(E,\beta)$ é a determinante Jacobiana da transformação, no contexto chamada de densidade de estados. Os variáveis $\beta \in \Omega'$ são os autovalores de observáveis que completam $\{H\}$ para um CSCO.⁸

Consideramos agora a adição de uma perturbação W,

$$H \doteq H_0 + W$$
.

e consideramos um estado ψ que inicialmente é um auto-estado de H_0 , $\psi_0 = \varphi_i$ com $H_0\varphi_i = E_i \cdot \varphi_i$. Para I no espectro de H_0 e $J \in \Omega'$, seja $p_{I,J}(t)$ a probabilidade de encontrar, no tempo t, uma valor da energia $E \in I$ e um valor de $\beta \in J$. Temos

$$p_{I,J}(t) = \int_{I} dE \int_{J} d\beta \, \varrho(E,\beta) |\langle E,\beta | \psi_t \rangle|^2$$
(103)

onde $\psi_t = U(t,0)\varphi_i$. Usando o raciocino da seção anterior, isso é em primeira ordem em W:

$$p_{I,J}(t) \simeq \frac{1}{\hbar^2} \int_I dE \int_J d\beta \, \varrho(E,\beta) \, \frac{\sin^2(\omega t/2)}{(\omega/2)^2} \, |\langle E,\beta | W \varphi_i \rangle|^2 \tag{104}$$

$$\int_{\mathbb{R}^3} d^3 \mathbf{k} \, |\chi_{\mathbf{k}}\rangle \langle \chi_{\mathbf{k}}| = 1 \,, \quad H\chi_{\mathbf{k}} = E(k) \cdot \chi_{\mathbf{k}} \qquad \text{com } E(\mathbf{k}) = \frac{\hbar^2 k^2}{2m} \,.$$

(A primeira equação é o Teorema de Fourier.) Chamamos $\chi_{\mathbf{k}} \doteq |E, \mathbf{n}\rangle$ com $E \doteq E(k)$ e $\mathbf{n} \doteq \mathbf{k}/|\mathbf{k}| \in S^2$. A transformação de variáveis $\mathbf{k} \mapsto (E, \mathbf{n})$ resulta em

$$\int_0^\infty dE \int_{S^2} d\Omega(\boldsymbol{n}) \, \varrho(E) \, |E, \boldsymbol{n}\rangle \langle E, \boldsymbol{n}| = 1 ,$$

com densidade de estados $\varrho(E) = \frac{m\sqrt{2mE}}{\hbar^3}$, onde $d\Omega(\boldsymbol{n}) = \, \sin\theta d\theta d\varphi$ é a medida na esfera.

⁸Por exemplo, para o Hamiltoneano livre, temos $\Omega = \mathbb{R}^3$, $d(\mathbf{k}) = 1$ para todo $\mathbf{k} \in \mathbb{R}^3$, e uma BON contínua de autovetores é dada por $\chi_{\mathbf{k}}(\mathbf{r}) \doteq (2\pi)^{-\frac{3}{2}} e^{i\mathbf{k}\cdot\mathbf{r}}$. Em particular, temos

onde $\omega \doteq (E - E_i)/\hbar$. Para grandes t, usamos a relação $\frac{\sin^2(\omega t/2)}{(\omega/2)^2} \to 2\pi t \delta(\omega) = 2\pi t \hbar \delta(E - E_i)$, e concluimos

$$p_{I,J}(t) \simeq t \cdot \frac{2\pi}{\hbar} \int_I dE \int_J d\beta \, \varrho(E,\beta) \, |\langle E,\beta | W \varphi_i \rangle|^2$$
 (105)

se $E_i \in I$ (e = 0 se $E_i \notin I$). Isso é a regra de ouro de Fermi.

5 Teoria de espalhamento

5.1 Seção de choque

Discutimos o espalhamento elástico de duas partículas com massas m_1 e m_2 , interagindo por um potencial da forma $V(\mathbf{r}_1 - \mathbf{r}_2)$. Num primeiro momento, a discussão será clássica. O processo considerado corresponde, no referencial de centro de massa, ao espalhamento de uma partícula com massa $m = m_1 m_2/(m_1 + m_2)$ pelo potencial $V(\mathbf{r})$ (o "alvo"). Supondo que o potencial V seja de curto alvançe e concentrado perto da origem, para tempos muito antes e muito depois do choque, o movimento da partícula pode ser suposto como retilinear ("assíntotas entrando e saindo").

Começamos com a descrição clássica da experiência de collisão. O estado incedente $(t \to -\infty)$ é caraterizado pelo momento \boldsymbol{p} e o parámetro de impacto: Isso é o ponto onde a assíntota entrando perfura um plano S perpendicular a \boldsymbol{p} (antes do alvo). O estado final $(t \to \infty)$ é caraterizado pelo ângulo sólido da assíntota saindo com a assíntota entrando, o qual pode ser identificado com um vetor normalizado $\boldsymbol{n} \in S^2$. (A norma $|\boldsymbol{p}|$ do momento deve ser inalterada pela conservação da energia.) No princípio queremos saber, para cada

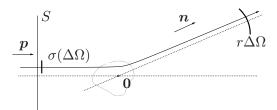


Figure 1: Visualização de $\sigma(\Delta\Omega)$

 $n \in S^2$, onde a partícula deve atravessar o plano S para que ela tenha a direção assintótica n depois do espalhamento. Na prática, em vez de uma direção fixa n consideramos um elemento de ângulo sólido $\Delta\Omega \subset S^2$ e perguntamos qual elemento de superfície contida em S a partícula deve atravessar para que ela seja espalhada para dentro de $\Delta\Omega \subset S^2$. A área dessa superfície é a chamada seção de choque, em símbolos $\sigma(\Delta\Omega)$, ver figura 1. (A aplicação $\Delta\Omega \mapsto \sigma(\Delta\Omega)$ é a maior informação sobre o potencial V que pode ser obtido por esse tipo de experiência.)

Para determinar a seção de choque, a experiência é repitida um grande número N de vezes, com frequência constante e com o parámetro de impacto variando aleatoriamente, de tal maneira que o fluxo incidente $F_{\rm in}$ é homogêneo. Isso é o número de partículas que atravessam S por unidade de área e de tempo: Para uma pequena superfície $\Delta S \subset S$

e um intervalo de tempo Δt , seja $N_{\rm in}(\Delta S, \Delta t)$ o número de partículas que atravessam a superfície ΔS em Δt , e

$$n_{\rm in}(\Delta S) \doteq \frac{N_{\rm in}(\Delta S, \Delta t)}{\Delta t} \tag{106}$$

a taxa com qual as partículas atravessam $\Delta S.$ (Suposto independente de t.) O fluxo é definido por

$$F_{\rm in} := \frac{n_{\rm in}(\Delta S)}{|\Delta S|} \equiv \frac{N_{\rm in}(\Delta S, \Delta t)}{|\Delta S| \Delta t},\tag{107}$$

onde $|\Delta S|$ é a área de ΔS . (Ele é suposto a ser homogêneo, ou seja, independente de ΔS .) Similarmente, seja $N_{\rm out}(r\Delta\Omega,\Delta t)$ o número de partículas que são detectadas em Δt pelo detetor localizado no ângulo sólido $\Delta\Omega$, numa grande distância r da origem – ou seja, detectadas na superfície $r\Delta\Omega$ contida na esfera concentrada na origem com raio r. Definimos a taxa

$$n_{\mathrm{out}}(\Delta\Omega) := \lim_{r \to \infty} \frac{N_{\mathrm{out}}(r\Delta\Omega, \Delta t)}{\Delta t} \,.$$

Esperamos que para todo elemento de ângulo sólido $\Delta\Omega \subset S^2$ existe um elemento de superfície $S(\Delta\Omega) \subset S$ tal que toda partícula que está espalhada para dentro de $\Delta\Omega$ deve ter atravessado a superfície $S(\Delta\Omega)$. Daí, vale

$$n_{\rm out}(\Delta\Omega) = n_{\rm in}(S(\Delta\Omega))$$
.

Pela definição (107) do fluxo, isso é

$$n_{\text{out}}(\Delta\Omega) = F_{\text{in}} \, \sigma(\Delta\Omega),$$
 (108)

onde $\sigma(\Delta\Omega) \doteq |S(\Delta\Omega)|$ é a área de $S(\Delta(\Omega))$. Isso é a definição operacional da seção de choque. Ela faz sentido na mecância quântica também, e nossa tarefa é agora calcula-la na mecânica quântica para um dado potencial.

Na mecância quântica, recordamos que a densidade de corrente correspondente correspondente a um estado ψ é dada por

$$\boldsymbol{j}(\boldsymbol{r}) \doteq \frac{\hbar}{m} \Im \big(\overline{\psi(\boldsymbol{r})} \nabla \psi(\boldsymbol{r}) \big) \,.$$

Para o estado incedente, a expressão $j_{\rm in}|S|$ é a derivada temporal da probabilidade que a partícula se encontra na região G_+ atras da superfície $S^{,9}$ Essa derivada pode ser escrita como

$$\lim_{\Delta t \to 0} \frac{1}{N\Delta t} \left(\underbrace{N_{t+\Delta t}(G_+) - N_t(G_+)}_{} \right),$$

onde $N_t(G_+)$ é o número de partículas na região G_+ no tempo t. Mas a diferênça em parenteses é justamente o número de partículas atravesando a superfície S no intervalo de tempo Δt , a saber $N_{\rm in}(S,\Delta t)$. Temos então $j_{\rm in}|S|=\frac{1}{N}\,n_{\rm in}(S)$, ou seja,

$$N j_{\rm in} = \frac{n_{\rm in}(S)}{|S|} \equiv F_{\rm in} . \tag{109}$$

$$\oint_{\partial G_{+}} \boldsymbol{j} \cdot d\boldsymbol{a} = -\frac{d}{dt} P_{t}(\boldsymbol{X} \in G_{+}),$$

e a hipótese que a corrente incidente seja perpendicular à superfície S.

⁹Essa interpretação segue da relação de continuidade,

Pelo mesmo raciocino concluimos, sob a hipótese que $j_{\text{out}}(r)$ tem a direção radial \hat{r} para grandes r:

$$n_{
m out}(\Delta\Omega) = \lim_{r o \infty} N \, \int_{r \Delta\Omega} oldsymbol{j}_{
m out} \cdot doldsymbol{a} = \lim_{r o \infty} N \, \int_{\Delta\Omega} j_{
m out}(oldsymbol{r}) r^2 d\Omega \, .$$

Usando Eq. (109), concluimos que

$$\sigma(\Delta\Omega) \equiv \frac{n_{\rm out}(\Delta\Omega)}{F_{\rm in}} = \lim_{r \to \infty} \int_{\Delta\Omega} \frac{j_{\rm out}(\boldsymbol{r})}{j_{\rm in}} r^2 d\Omega \,,$$

ou seja,

$$\frac{d\sigma}{d\Omega}(\mathbf{n}) = \lim_{r \to \infty} r^2 \frac{j_{\text{out}}(r\mathbf{n})}{j_{\text{in}}}.$$
 (110)

5.2 Teoria de espalhamento independente de tempo

Na mecânica quântica, na abordagem independente do tempo, consideramos como estado incedente uma onda plana com momento $p = \hbar h$. Desprezaremos o spin; então o espaço de estados é $\mathcal{H} = L^2(\mathbb{R}^3)$.

Definição 11 Um estado de uma partícula é chamado de

- estado ligado see para todo $\varepsilon > 0$ existe uma região G limitada tal que para todo t a probabilidade de encontrar a partícula em G é maior o igual a 1ε ;
- estado de espalhamento se para toda região limitada G, a probabilidade de encontrar a partícula em G cai para zero para $t \to \pm \infty$.

Teorema 12 Um estado é ligado se, e somente se, ele está no subespaço $\mathcal{H}_p(H)$ gerado pelos auto-vetores (próprios) do Hamiltoniano H.

Ele é um estado de espalhamento se, e somente se, ele está no subespaço $\mathcal{H}_{ac}(H)$ associado com o espectro absolutamente contínuo.

 $\mathcal{H}_{ac}(H)$ é aquele subespaço que possui uma BON contínua de auto-vetores improprios do Hamiltoniano H, (veja [3, Tma. 21]). Para os Hamiltonianos "não-patológicas" o chamado espectro singular-contínuo é vazio, e nesse caso $\mathcal{H} = \mathcal{H}_{p}(H) \oplus \mathcal{H}_{ac}(H)$.

Seja agora o Hamiltoniano da forma $H_0 + V$, onde H_0 é o Hamiltoniano livre em $L^2(\mathbb{R}^3)$. Para uma grande classe de potenciais de curto alcançe vale o seguinte:

Teorema 13 Seja $V \in L^1(\mathbb{R}^3)$ tal que¹⁰

$$\int d^3\boldsymbol{x} d^3\boldsymbol{y} \frac{|V(\boldsymbol{x}) \, V(\boldsymbol{y})|}{\|\boldsymbol{x} - \boldsymbol{y}\|^2} \, < \, \infty \, .$$

Então existe uma BON contínua $\{\chi_{\mathbf{k}}, \mathbf{k} \in \mathbb{R}^3\}$ de autovetores generalizados de $H_0 + V$ com autovalor (generalizado) $E(\mathbf{k}) = \frac{\hbar^2 k^2}{2m}$, tal que para grandes r vale

$$\chi_{\mathbf{k}}(\mathbf{r}) \underset{r \to \infty}{\simeq} e^{i\mathbf{k}\cdot\mathbf{r}} + f(\mathbf{k},\hat{\mathbf{r}}) \frac{e^{ikr}}{r} + O(r^{-2}), \qquad \hat{\mathbf{r}} \doteq \mathbf{r}/r.$$
 (111)

¹⁰Isso carateriza a classe de Rollnick. Veja [8] para outras condições suficientes.

Esse fato é implícito no Thm. XI.41 em [7]. O primeiro termo descreve uma onda plana incidente, e o segundo termo descreve uma onda esférica saindo. A funç \tilde{o} f é chamada de amplitude de espalhamento. Se o potencial for radial (ou seja, invariante sob rotações), ela é da forma

$$f(\mathbf{k}, \hat{\mathbf{r}}) = f(k, \theta), \quad k \doteq ||\mathbf{k}||, \ \theta \doteq \angle(\mathbf{k}, \mathbf{r}).$$
 (112)

Vamos supor que o nosso Hamiltoneano seja da forma anunciada no Teorema 13. A evolução temporal de um estado inicialmente descrito por $\psi_0 = \int d^3 \mathbf{k} A(\mathbf{k}) \chi_{\mathbf{k}}$ é dada, para grandes r, por

$$\psi_t(\mathbf{r}) = \int d^3\mathbf{k} A(\mathbf{k}) \, \chi_{\mathbf{k}}(\mathbf{r}) \, e^{-it\omega(\mathbf{k})} \underset{r \to \infty}{\sim} \int d^3\mathbf{k} A(\mathbf{k}) \, e^{i(\mathbf{k} \cdot \mathbf{r} - t\omega(\mathbf{k}))} + \int d^3\mathbf{k} A(\mathbf{k}) \, \frac{f(\mathbf{k}, \hat{\mathbf{r}})}{r} \, e^{i(kr - t\omega(\mathbf{k}))},$$

onde $\omega(\mathbf{k}) \doteq \hbar k^2/2m$. O primeiro termo é um pacote de onda livre, e o segundo termo descreve para grandes t o estado saindo espalhado pelo alvo V (e vai para 0 se $t \to -\infty$).

A densidade de corrente correspondente à χ_{k} ,

$$\boldsymbol{j} \doteq \frac{\hbar}{m} \Im \left(\overline{\chi_{\boldsymbol{k}}} \nabla \chi_{\boldsymbol{k}} \right),$$

é da forma

$$\mathbf{j} = \mathbf{j}_{\text{in}} + \mathbf{j}_{\text{out}} + \mathbf{j}_{\text{interf}}, \quad \text{onde } \mathbf{j}_{\text{in}} \doteq \frac{\hbar \mathbf{k}}{m}, \quad \mathbf{j}_{\text{out}}(\mathbf{r}) \doteq \frac{\hbar k}{m} \frac{|f(\mathbf{k}, \hat{\mathbf{r}})|^2}{r^2} \hat{\mathbf{r}} + O(r^{-3}), \quad (113)$$

enquanto que j_{interf} não contribui para a seção de choque $\sigma(\Delta\Omega)$ dado que $k/k \notin \Delta\Omega$. (Demonstração na aula.) Com isso, pela Eq. (110) temos

$$\frac{d\sigma}{d\Omega}(\boldsymbol{n}) \equiv \lim_{r \to \infty} r^2 \frac{j_{\text{out}}(r\boldsymbol{n})}{j_{\text{in}}} = |f(\boldsymbol{k}, \boldsymbol{n})|^2.$$
(114)

Teorema ótico.

Série de Born. Vamos agora construir os auto-vetores (generalizados) χ_k do Teorema 13 para um dado potencial, verificar que eles se comportam como (111) para grandes r, e calcular a amplitude de espalhamento f.

A equação de Schrödinger independente de tempo e com auto-energia $E=\hbar^2k^2/2m,$ pode ser escrita como

$$(\Delta + k^2)\chi_{\mathbf{k}}(\mathbf{r}) = \frac{\hbar^2 k^2}{2m} V(\mathbf{r})\chi_{\mathbf{k}}(\mathbf{r}). \tag{115}$$

Recordamos que a função

$$G(r) \doteq \frac{-1}{4\pi r} e^{ikr} \tag{116}$$

é uma função de Green para o operador $\Delta + k^2$, i.e., $(\Delta + k^2)G = \delta^{(3)}$, ou seja, a EDO $(\Delta + k^2)u = h$ possui a solução u = G * h (veja [2]). Isso implica que toda solução da EDP (115) é da forma

$$\chi_{\mathbf{k}} = \chi_{\mathbf{k}}^0 + I\chi_{\mathbf{k}}, \quad \text{onde } I\chi \doteq \frac{\hbar^2 k^2}{2m} G * (V \cdot \chi)$$
 (117)

e $\chi_{\mathbf{k}}^0$ é uma solução da equação correspondente homogênea, $(\Delta + k^2)\chi_{\mathbf{k}}^0 = 0$. Para descrever situações de espalhamento, pegamos a onda plana,

$$\chi_{\mathbf{k}}^0(\mathbf{r}) \doteq e^{i\mathbf{k}\cdot\mathbf{r}}$$
.

Formalmente, a solução da equação (117) é

$$\chi_{\mathbf{k}} = \chi_{\mathbf{k}}^0 + \sum_{n=1}^{\infty} I^n \chi_{\mathbf{k}}^0, \qquad (118)$$

onde $I^n \doteq I \circ \cdots \circ I$. Isso é a *série de Born*. Para potenciais centrais, dá para mostrar que essa série converge se¹¹

$$\frac{2m}{\hbar^2} \int_0^\infty dr \, r |V(r)| < 1.$$
 (119)

Se esse número é $\ll 1$, os primeiros termos são uma bõa aproximação. (Referência?) A aproximação com n=1,

$$\chi_{\mathbf{k}} \simeq \chi_{\mathbf{k}}^0 + I \chi_{\mathbf{k}}^0 \,, \tag{120}$$

é chamada de aproximação de Born. Vamos calculá-la.

Para uma função qualquer χ , temos

$$(I\chi)(\mathbf{r}) = -\frac{m}{2\pi\hbar^2} \int d^3\mathbf{r}' \frac{e^{ik|\mathbf{r}-\mathbf{r}'|}}{|\mathbf{r}-\mathbf{r}'|} V(\mathbf{r}') \chi(\mathbf{r}')$$

$$\simeq -\frac{m}{2\pi\hbar^2} \frac{e^{ikr}}{r} \int d^3\mathbf{r}' e^{-ik\mathbf{n}\cdot\mathbf{r}'} V(\mathbf{r}') \chi(\mathbf{r}') + O(r^{-2})$$

onde $\boldsymbol{n} \doteq \boldsymbol{r}/r$. (Usamos a expansão $|\boldsymbol{r} - \boldsymbol{r}'| = r - \boldsymbol{n} \cdot \boldsymbol{r}' + O(r^{-1})$ para $r/r' \to \infty$.) Para uma onda plana, $\chi = \chi_{\boldsymbol{k}}^0 = e^{i\boldsymbol{k}\cdot\boldsymbol{r}}$, a integral é justamente a tranformada de Fourier do potencial no ponto $\boldsymbol{k} - k\boldsymbol{n}$,

$$\hat{V}(\mathbf{k} - k\mathbf{n}) \doteq \int d^3\mathbf{r}' \, e^{i(\mathbf{k} - k\mathbf{n}\cdot\mathbf{r}')} V(\mathbf{r}') \,.$$

Resumindo, achamos uma solução $\chi_{\boldsymbol{k}}$ da Equação de Schrödinger com energia $\hbar^2 k^2/2m$ que se comporta como (111), onde a amplitude de espalhamento é dada, em primeira ordem, por

$$f^{\mathrm{B}}(\boldsymbol{k},\boldsymbol{n}) = -\frac{m}{2\pi\hbar^2}\hat{V}(\boldsymbol{k} - k\boldsymbol{n}). \tag{121}$$

Método de ondas parciais.

5.3 Teoria de espalhamento dependente de tempo

(Equação de Lippmann-Schwinger...)

 $^{^{11}}$ Pois (119) estabelece uma norma para o operador I. Se essa norma for menor que 1, o operador $\mathbbm{1} - I$ possui o inverso $\mathbbm{1} + \sum_{n=1}^{\infty} I^n$ pelo argumento padrão da análise.

References

[1] C. Cohen-Tannoudji, B. Diu, and F. Laloë, Quantum mechanics, vol. 1, J. Wiley, 1977.

- [2] J. Mund, Distribuições e Transformada de Fourier, UFJF, 2021, Notas de aula.
- [3] _____, Espaços de Hilbert, espectro, EDP's, UFJF, 2021, Notas de aula.
- [4] _____, Mecânica quântica I, UFJF, 2021, Notas de aula.
- [5] M. Reed and B. Simon, *Methods of modern mathematical physics I*, Academic Press, New York, 1975.
- [6] _____, Methods of modern mathematical physics II, Academic Press, New York, 1980.
- [7] ______, Methods of modern mathematical physics III, Academic Press, New York, 1980.
- [8] J.R. Taylor, Scattering theory: The quantum theory on nonrelativistic collisions, John Wiley, 1972.