

What is a variable inductor?

Variable inductors based on moving cores:

Outline

- Introduction to VIs
- Analytical Modeling of VIs
- SPICE-based Modeling of VIs
- Examples of Applications
- Conclusions

12

Analysis Example		
TABLE II. VARIABLE INDUC	TOR DATA	
Variable Inductor		
AC winding turns, Nac	6	
DC winding turns, N _{dc}	65	
DC control current, Idc	0-0.5 A	
AC current range, Iac	0 – 6 A	
Central arm airgap length, l_{gc}	0.6 mm	
Estimated central fringing factor, v	1.06	WEINER AND
Lateral arms airgap length, lge	0.03 mm	
Estimated external fringing factor, v_e	1.0	
Expected inductance range, Lac	1.5 – 4.5 μH	
EFD25/13/9 (T	DK)	
Outer arms length, l_e	43.6 mm	
Outer arms area, A_e	28.7 mm ²	
Center arm length, l_c	24.4 mm	
Center arm area, A _c	59.3 mm ²	10 11 10 19
N87 (TDK)		10 11 12 13
Initial permeability, 25°C, μ_i	2200	
Flux density at H=1200 A/m, 25°C	490 mT	
Optimum frequency range	25 kHz – 500 kHz	
Brauer's model parameters [21]		

Outline

- Introduction to VIs
- Analytical Modeling of VIs
- SPICE-based Modeling of VIs
- Examples of Applications
- Conclusions

17

Outline

- Introduction to VIs
- Analytical Modeling of VIs
- SPICE-based Modeling of VIs
- Examples of Applications
- Conclusions

18

Summary and Conclusions

- Variable inductors can be used to provide additional control parameters in power electronics converters.
- Analytical modeling of VI is useful for the first design and evaluation of the variable inductor.
- SPICE based models can be used to simulate the complete converter under VI control.
- VI have been tested successfully to perform control of power converters in different applications
- New ideas and applications are expected in the near future. There
 are possibilities to develop new ideas using VI for the control of
 power converters.

