# Monitoring and Control of Discrete Event Systems: Some Key Results and Recent Research

Stéphane Lafortune

EECS Department University of Michigan, USA

Plenary Lecture at *Congresso Brasileiro de Automática CBA'2008* Juiz de Fora, Brazil

17 September 2008

- Discrete Event Systems (DES): The Big Picture
- Part 1- Control Problem
- Part 2- Diagnosis Problem
- Part 3- Active Sensing Problem
- Conclusion

< 🗆

nac

#### Preamble

## Acknowledgments

1- Control / 2- Diagnosis / 3- Active Sensing

#### Collaborators

- Brazil:
  - Patrícia Nascimento Pena (UFMG) José Eduardo Ribeiro Cury (UFSC) Antonio Eduardo Carrilho da Cunha (IME-RJ) Max Hering de Queiroz (UFSC)



- Michigan:
  - Dawn Tilbury (UM)
  - 2 Demosthenis Teneketzis (UM)
  - Feng Lin (Wayne State U.)
- Students:
  - Richard Hill (U. Detroit-Mercy)
  - 2 Many...
  - Weilin Wang (UM Post-Doc)

DQ C

## Acknowledgments

- Financial Support:
  - National Science Foundation (USA)
  - Office of Naval Research (USA)
  - HP Labs.
  - Xerox Corp.

< 🗆 🕨

#### Discrete Event Systems: The Big Picture

What are Discrete Event Systems?

- Discrete State Spaces
- Event-driven Dynamics



Baggage Handling Systems - Beijing Airport (Siemens)



## Discrete Event Systems: The Big Picture

#### How Do We Model DES? $\rightarrow$ Answer 1: Automata



## Discrete Event Systems: The Big Picture

How Do We Obtain the Complete System? **Parallel Composition of Automata:** || Common Events 184 reachable states (out of  $2 \times 2 \times 3 \times 4 \times 3 \times 3 = 432$ ) 482 transitions





SQ (P

## **DESUMA Software Tool**

| ) 🚅 🖬 👌<br>≤ AM × B7 | Manipulation ><br>Edit > | Accessibility     Concessibility     Concessibility     Concessibility     Concessibility     Condicatenation     Conflict     Equivalent     Includes (Subset)     Imenrese Projection To L | Properties     |         |         |  |
|----------------------|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|---------|---------|--|
|                      | Control >                |                                                                                                                                                                                              | AN             | AM      |         |  |
| 1                    | Diagnosis 🕨              |                                                                                                                                                                                              | true<br>4<br>5 |         |         |  |
| (                    |                          |                                                                                                                                                                                              |                |         |         |  |
|                      | Stochastic +             |                                                                                                                                                                                              |                |         |         |  |
| 1                    | (L2)                     |                                                                                                                                                                                              | S              |         |         |  |
| 1                    |                          |                                                                                                                                                                                              | E              | Marked  | Initial |  |
| 1                    | 1                        | Inverse Projection                                                                                                                                                                           |                | F       | F       |  |
|                      |                          | Minimum State ESA                                                                                                                                                                            |                |         |         |  |
| ( • )                | 5_2                      | Animitani State i SA                                                                                                                                                                         |                |         |         |  |
| R                    | 1                        | Observer with Unobservable Reach                                                                                                                                                             |                |         |         |  |
| / \s_                | a /                      |                                                                                                                                                                                              | S              |         |         |  |
| 1                    | /                        | Parallel Composition Product .                                                                                                                                                               | 1              | Observe | Control |  |
| 111 6                | ٢ ٢                      |                                                                                                                                                                                              |                | ¥       |         |  |
|                      | /                        | Refine                                                                                                                                                                                       |                | R       | 2       |  |
|                      |                          | Trim                                                                                                                                                                                         |                | ¥       |         |  |
| /s_1                 |                          | Union                                                                                                                                                                                        |                | ĸ       | r       |  |
|                      |                          |                                                                                                                                                                                              |                | ĸ       | ĸ       |  |
| 2                    |                          | -                                                                                                                                                                                            |                |         |         |  |

#### Figure: DESUMA menu for manipulation of automata



< 🗆 🕨

### **DESUMA Software Tool**



#### Figure: Small FMS automaton

-

< ロ > < 何 >

#### Discrete Event Systems: The Big Picture

How Do We Model DES?  $\rightarrow$  Answer 2: Petri Nets



## Discrete Event Systems: Untimed or Logical Behavior

- Automaton: G
- Event Set of G: E
- Set of trajectories of G:
  - Language  $\mathcal{L}(G)$
  - string/trace:  $s \in \mathcal{L}(G)$
- Set of *marked* trajectories of G:
  - Marked Language  $\mathcal{L}_m(G) \subseteq \mathcal{L}(G)$
  - completed operations/tasks



## Discrete Event Systems: Logical Properties

#### Safety:

- no illegal states reached
- no illegal *substrings* executed
- Formally: Specification automaton H

 $\mathcal{L}(H) \subseteq \mathcal{L}(G)$ 

$$\mathcal{L}_m(H) = \mathcal{L}(H) \cap \mathcal{L}_m(G) \subseteq \mathcal{L}_m(G)$$

w.l.o.g.: think of  ${\cal H}$  as a subautomaton of  ${\cal G}$ 



## Discrete Event Systems: Logical Properties

Nonblocking: no deadlocks or livelocks



na a

DES: The Big Picture Logical Analysis

### **Discrete Event Systems: Logical Properties**

Deadlock in Petri Nets:



## Discrete Event Systems: Logical Properties

#### Maximal Permissiveness:

- Optimality criterion is set inclusion
- Only disable an event if absolutely necessary to guarantee safety and nonblocking



## Discrete Event Systems: Levels of Abstraction



Levels of Abstraction

#### Discrete Event Systems: Timed Automata





Controller

Figure: Three timed automata that jointly model a railroad crossing



∍

5990

17 / 96

< 🗆 🕨

DES: The Big Picture Levels of Abstraction

## Discrete Event Systems: Hybrid Automata



Figure: Thermostat with two discrete states



S. Lafortune (UMich)

- Logical (untimed) systems: Languages, Automata
- Reasoning on "simple, unstructured" models can help to elucidate fundamental system- and control-theoretic properties
- Formal approaches are needed in many applications: logic control, networked systems, software systems, transportation systems, etc.

 $\mathcal{O} \mathcal{Q} \mathcal{O}$ 

#### A few things to keep in mind:

- DES theoretical papers: too much notation!
- DES applications: too many states!
- This talk: too many slides!



A few things to keep in mind:

- DES theoretical papers: too much notation!



A few things to keep in mind:

- DES theoretical papers: too much notation!
- DES applications: too many states!
- This talk: too many slides!

< □ ▶

500

20 / 96

A few things to keep in mind:

- DES theoretical papers: too much notation!
- DES applications: too many states!
- This talk: too many slides!

< D



A few things to keep in mind:

- DES theoretical papers: too much notation!
- DES applications: too many states!
- This talk: too many slides!

< D



A few things to keep in mind:

- DES theoretical papers: too much notation!
- DES applications: too many states!
- This talk: too many slides!

< 🗆



A few things to keep in mind:

- DES theoretical papers: too much notation!
- DES applications: too many states!
- This talk: too many slides!



Control

First Part of this Talk

#### How to ensure safety and nonblocking by feedback control...



S. Lafortune (UMich)

Discrete Event Systems

< <p>I > I

- Languages/Automata: Supervisory Control Theory
  - Initiated by Ramadge & Wonham, 1980's
  - Mature body of theory: centralized, decentralized, modular

- Control of Petri Nets
  - Many approaches: supervision based on place-invariants, MILP, etc.

 $\mathcal{O} \mathcal{Q} \mathcal{O}$ 

#### Control Key Results

#### The Basic Control Problem: Statement



- Let:  $E = E_c \cup E_{uc}$  and  $E = E_o \cup E_{uo}$
- Given: System: G,  $E_c$ ,  $E_o$  + Spec:  $\mathcal{L}(H) \subseteq \mathcal{L}(G)$
- Synthesize: Supervisor S such that S/G is: safe and nonblocking and maximally permissive



## The Basic Control Problem: Solution

Control

• Full Observation:  $E_o = E$ 

$$\mathcal{L}_m(S/G) = [\mathcal{L}(H) \cap \mathcal{L}_m(G)]^{\uparrow C}$$

**Key Results** 

where  $\uparrow C = supremal \ controllable$  operation

- safe, nonblocking, maximally permissive
- $\uparrow C$ : quadratic complexity in H||G
- controllability:  $\mathcal{L}(H)E_{uc} \cap \mathcal{L}(G) \subseteq \mathcal{L}(H)$



#### Control Key Results The Basic Control Problem: Solution

• Partial Observation:  $E_o \subset E$ 

 $\rightarrow$  more difficult – control not discussed in this talk!



Control Ke

Key Results

## The Basic Control Problem: DESUMA Commands



S. Lafortune (UMich)

→ Ξ →

< ロ > < 何 >

# Towards a Modular Approach to Control

Control

**Key Results** 

- Sets of subplants and specifications
- Monolithic Approach



nac

26 / 96

# Towards a Modular Approach to Control

Control

**Key Results** 

 Control with Modular Specifications (Ramadge & Wonham, 1988)



< 🗆 🕨

na a

27 / 96

# Towards a Modular Approach to Control

• Local Modular Supervisory Control (Queiroz and Cury, 2000)

Control



Key Results

• Several related approaches: Heymann et al., Marchand et al., Schmidt et al., van Schuppen et al.



# Safety and Nonblocking under Composition

Control

- Safety: composable!
- Nonblocking: not composable!



**Key Results** 

• The conjunction of nonblocking supervisors may be blocking  $\implies S_1 \text{ AND } S_2 \text{ ARE } conflicting$ 

 $\mathcal{O} \mathcal{Q} \mathcal{O}$ 

29 / 96
<u>After</u> designing the supervisors ⇒ TEST FOR CONFLICT Test shows if the composed system is nonblocking, i.e., if the supervisors are nonconflicting (overbar notation means *prefix-closure*):

< 🗆

500

### Recent Work: P. Pena, J. Cury, S. Lafortune [2006-08]

Control

Present a new test for conflict based on abstractions of the original supervisors, with reduced complexity.

$$\overline{S_1} \| \overline{S_2} \| \dots \| \overline{S_m} \stackrel{?}{=} \overline{S_1} \| S_2 \| \dots \| S_m$$

500 17 September 2008 31 / 96

### Recent Work: P. Pena, J. Cury, S. Lafortune [2006-08]

Control

### Objective

Present a new test for conflict based on abstractions of the original supervisors, with reduced complexity.

Instead of calculating

$$\overline{S_1} \| \overline{S_2} \| \dots \| \overline{S_m} \stackrel{?}{=} \overline{S_1} \| S_2 \| \dots \| S_m$$

we calculate

$$\overline{\theta_1(S_1)} \| \overline{\theta_2(S_2)} \| \dots \| \overline{\theta_m(S_m)} \stackrel{?}{=} \overline{\theta_1(S_1)} \| \overline{\theta_2(S_2)} \| \dots \| \overline{\theta_m(S_m)}.$$



500

**Abstractions:** "simplify" the model by "erasing" some of the events and building a *projected version* of the original automaton

- Roughly: merge states that are connected by erased events
- Determinize the automaton if necessary
- *OP-abstractions:* have the property that (determinized) result has no more states than the original automaton

nar

### Reduced-Complexity Conflict Test

### Theorem

If the natural projections  $\theta_j(S_j)$  are **OP-abstractions** and if certain conditions over events not erased by these projections<sup>a</sup> are fulfilled, then

Control

$$\prod_{j=1}^{m} \overline{\theta_j(S_j)} = \overline{\prod_{j=1}^{m} \theta_j(S_j)} \Longleftrightarrow \prod_{j=1}^{m} \overline{S_j} = \overline{\prod_{j=1}^{m} S_j}.$$

<sup>a</sup>Two sets of conditions were developed



### Approach of Pena et al.

Solve according to the local modular approach (Queiroz & Cury)
Pick "good" θ<sub>i</sub>, that are *OP-abstractions*, for the local supervisors

Control

- Specific strategies are proposed in Ph.D. dissertation of P. Pena [2007]
- Perform the conflict test over the abstractions.

Throughout the process the entire system is never built

34 / 96

**Recent Research: Testing for Nonconflict** 

### Local Modular Synthesis



Figure: The FMS Example: 13,428 reachable states; 46,424 transitions



**Recent Research: Testing for Nonconflict** 

< 🗆

### Local Modular Synthesis



Figure: Synthesize supervisor for B2 using C2 and Robot

**Recent Research: Testing for Nonconflict** 

< 🗆

### Local Modular Synthesis



Figure: Synthesize supervisor for B4 using Robot and Lathe



**Recent Research: Testing for Nonconflict** 

< 🗆

### Local Modular Synthesis



Figure: Synthesize supervisor for B6 using Robot and AM

< 🗆

### Local Modular Synthesis



Figure: Synthesize supervisor for B7 using Robot, AM, and C3



### Local Modular Synthesis



Figure: Synthesize supervisor for B8 using C3 and PM

• Overall: Safe but blocking ... What do we do?

na a

40 / 96

**Recent Research: Design for Nonconflict** 

### Recent Research: R. Hill, D. Tilbury, S. Lafortune [2006-08]

- Refine the local modular approach in order to resolve conflict and obtain a safe and nonblocking system
- Three approaches proposed in Ph.D. dissertation of R. Hill [2008]
  - One of the approaches developed in collaboration with J. Cury and M. de Queiroz
- No "free lunch": may not be maximally permissive



#### Control Recent Research: Design for Nonconflict

# Modular Synthesis Using Conflict Resolution and Abstraction

Exploit a notion of *equivalence* for states defined by R. Malik, H. Flordal et al.



Figure: Abstraction based on *conflict equivalence*; event f is not "relevant"



**Recent Research: Design for Nonconflict** 

## Modular Synthesis Using Conflict Resolution and Abstraction



Figure: Synthesize S1 (B2), S2 (B4), S3 (B6), S4 (B7), S5 (B8)



na a

**Recent Research: Design for Nonconflict** 

# Modular Synthesis Using Conflict Resolution and Abstraction



Figure: Abstract Controlled System 4: S4 for Robot||C3||AM



**Recent Research: Design for Nonconflict** 

## Modular Synthesis Using Conflict Resolution and Abstraction



Figure: Abstract Controlled System 3: S3 for Robot||AM



**Recent Research: Design for Nonconflict** 

## Modular Synthesis Using Conflict Resolution and Abstraction





**Recent Research: Design for Nonconflict** 

## Modular Synthesis Using Conflict Resolution and Abstraction







**Recent Research: Design for Nonconflict** 

## Modular Synthesis Using Conflict Resolution and Abstraction



Figure: Abstract Controlled System 2: S2 for Lathe || Robot



**Recent Research: Design for Nonconflict** 

## Modular Synthesis Using Conflict Resolution and Abstraction





**Recent Research: Design for Nonconflict** 

# Modular Synthesis Using Conflict Resolution and Abstraction



Figure: Abstract Composed 2&3&4 of previous step



**Recent Research: Design for Nonconflict** 

## Modular Synthesis Using Conflict Resolution and Abstraction



Figure: Abstract Controlled System 5: S5 for PM||C3



#### Control Recent Re

**Recent Research: Design for Nonconflict** 

## Modular Synthesis Using Conflict Resolution and Abstraction



Figure: Nonconflict Test of Abstracted Controlled Systems 5 and 2&3&4: *Conflict!* 



**Recent Research: Design for Nonconflict** 

## Modular Synthesis Using Conflict Resolution and Abstraction



Figure: Synthesize filter  $H_{filt}$  to make 5 with 2&3&4 nonblocking





**Recent Research: Design for Nonconflict** 

# Modular Synthesis Using Conflict Resolution and Abstraction



Figure: Abstract Composed  $2\&3\&4\&5\&H_{filt}$  of previous step



54 / 96

**Recent Research: Design for Nonconflict** 

## Modular Synthesis Using Conflict Resolution and Abstraction



Figure: Abstract Controlled System 1: S1 for C2||Robot



**Recent Research: Design for Nonconflict** 

## Modular Synthesis Using Conflict Resolution and Abstraction



Figure: Test for Nonconflict of Abstracted Controlled Systems 1 and 2&3&4&5& $H_{filt}$ : OK

**Recent Research: Design for Nonconflict** 

## Modular Synthesis Using Conflict Resolution and Abstraction



Figure: Overall, 6 modular controllers: S1, S2, S3, S4, S5, and  $H_{filt}$ 



na a

57 / 96

**Recent Research: Design for Nonconflict** 

< 🗆 🕨

## Modular Synthesis Using Conflict Resolution and Abstraction

Computational Gains:

| Case       | Largest                        | Largest                          | Number    |
|------------|--------------------------------|----------------------------------|-----------|
|            | Supervisor                     | intermediate                     | of pieces |
|            |                                | automaton                        | active    |
|            | <i>и</i> ( <i>и</i> . )        | <i>µ ( µ</i>                     |           |
|            | #states(#trans)                | #states(#trans)                  |           |
| monolithic | #states(#trans)<br>2256 (7216) | <b>#states(#trans)</b><br>13,248 | 6         |



nac

58 / 96

∍

**Recent Research: Design for Nonconflict** 

## Modular Synthesis Using Conflict Resolution and Abstraction

What do we gain/lose?

- Safety guaranteed
- Nonblocking guaranteed
- Not maximally permissive in general
- Computations reduced



- Modular control: use of abstraction, hierarchical methods, structured models with *interfaces*
- Decentralized control architectures for partially-observed systems
- Distributed control with communication (networked systems)
- Fault tolerant control: need for fault diagnosis!

nar

60 / 96

#### Diagnosis

### Diagnosis of Partially Observed DES

Second Part of this Talk

How to detect unobservable events...



S. Lafortune (UMich)

Discrete Event Systems



• Model-based inferencing about past occurrence of *significant* (aka *fault*) events



- Initiated by F. Lin (WSU, 1994) and M. Sampath, R. Sengupta, K. Sinnamohideen, S. Lafortune and D. Teneketzis (1995)
- Numerous extensions: timed, intermittent faults, decentralized and distributed architectures, etc.

Diagnosis Heating, Ventilation, and Air Conditioning Systems

**Key Results** 

- K. Sinnamohideen, M. Sampath (Johnson Controls, Inc.)
  - Components hard to access, few sensors
  - Valve, pump, controller faults, etc.
  - Objective: Automate detection and isolation of faults





### **Conceptual System Architecture**


#### Diagnosis

**Key Results** 

### The Essence of the Problem



<

17 September 2008

# The Essence of the Problem - Diagnosers



S. Lafortune (UMich)

**Discrete Event Systems** 

17 September 2008

5900

66 / 96

### Information in Diagnoser States

From (simplified) HVAC example - pprox 150 states



### Steps in the Diagnoser Approach

- Model complete system with sensors, including faulty behavior
- Observable vs. unobservable events
- Analysis: Can the faults always be diagnosed?
  - Notion of *diagnosability*
  - Tests using diagnoser / verifier automata
- Online Diagnosis: How to detect faults online?
  - Diagnoser Automata / Petri Nets



What Should We Worry About? Indeterminate Cycles in Diagnoser:

Diagnosis



**Key Results** 

### **Diagnosability Analysis**

### Diagnosability

An unobservable (fault) event f is diagnosable in language  $\mathcal{L}(G)$  if every occurrence of f can be detected with certainty in a bounded number of events after it occurs.

### Theorem

A system modeled by automaton G is diagnosable iff its Diagnoser  $G_d$  does not contain indeterminate cycles.



### **Diagnosability Analysis**

### Diagnosability

An unobservable (fault) event f is diagnosable in language  $\mathcal{L}(G)$  if every occurrence of f can be detected with certainty in a bounded number of events after it occurs.

### Theorem

A system modeled by automaton G is diagnosable iff its Diagnoser  $G_d$  does not contain indeterminate cycles.



nar

70 / 96

Diagnosis Key Results

## **Diagnosability Analysis in DESUMA**

|                                                                                                                                              | Manipulation •                                     |                                                                                                                                                                                                                                    |                                                                   |                                                            | \$      |
|----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|------------------------------------------------------------|---------|
| New1                                                                                                                                         | Edit )                                             | 2                                                                                                                                                                                                                                  | Automata                                                          | Properties                                                 |         |
| Z New1 Edd<br>Control<br>Diagnosis<br>Stochasti<br>Uu u<br>u<br>u<br>u<br>u<br>u<br>u<br>u<br>u<br>u<br>u<br>u<br>u<br>u<br>u<br>u<br>u<br>u | Control<br>Diagnosis<br>Stochastic<br>4<br>uo<br>b | <ul> <li>Diagnost hilly</li> <li>Diagnoser without Unobservable Reach<br/>Diagnoser without Unobservable Reach<br/>Extended Diagnoser<br/>Sensor Map<br/>Verifier</li> <li>Total Content of the sensor Map<br/>Verifier</li> </ul> | Name<br>Editable<br>States<br>Transitions<br>States<br>State Name | New1<br>true<br>5<br>8<br>S<br>S<br>A<br>Marked<br>C<br>TS | Initial |
|                                                                                                                                              | )a (                                               |                                                                                                                                                                                                                                    | a b f uo                                                          |                                                            |         |





71 / 96

S. Lafortune (UMich)

< ロ > < 同

Diagnosis

**Key Results** 

## Diagnosability Analysis in DESUMA

| Ø DESUMA<br>File Fritt View LINDES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                        | le e Hein   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|------------------------|-------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                           |                        | 23          |
| × New1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Automata                                  | Properties             |             |
| (4))a (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Name<br>Editable<br>States<br>Transitions | New1<br>true<br>5<br>8 |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ▼ STATE                                   | S                      |             |
| $\begin{array}{c} 0 \\ 5 \\ \end{array}$ $\begin{array}{c} 0 \\ a \\ \end{array}$ $\begin{array}{c} 0 \\ c \\ \end{array}$ $\begin{array}{c} 0 \\ \end{array}$ $\begin{array}{c} 0 \\ c \\ \end{array}$ $\begin{array}{c} 0 \end{array} \end{array}$ $\begin{array}{c} 0 \\ \end{array}$ $\begin{array}{c} 0 \end{array} \end{array}$ $\begin{array}{c} 0 \\ \end{array}$ $\begin{array}{c} 0 \end{array} \end{array}$ $\begin{array}{c} 0 \end{array}$ $\begin{array}{c} 0 \end{array} \end{array}$ \\ \end{array} \\ $\begin{array}{c} 0 \end{array} \end{array}$ \\ \end{array} \\ $\begin{array}{c} 0 \end{array} \end{array}$ \\ \end{array} $\begin{array}{c} 0 \end{array} \end{array}$ \\ \end{array} \\ $\begin{array}{c} 0 \end{array} \end{array}$ \\ \end{array} $\begin{array}{c} 0 \end{array} \end{array}$ \\ \end{array} \\ $\begin{array}{c} 0 \end{array} \end{array}$ \\ \end{array} \\ \end{array} \\ $\begin{array}{c} 0 \end{array} \end{array}$ \\ \end{array} \\ \end{array} \\ $\begin{array}{c} 0 \end{array} \end{array}$ \\ \end{array} \\ \\ $\begin{array}{c} 0 \end{array} \end{array}$ \\ \end{array} \\ \\ \end{array} \\ $\end{array}$ | State Nam                                 | e Marke                | ed Initial  |
| DESUMA Results Window                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                           |                        |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                           |                        |             |
| Hmf.cycles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                           | Obser                  | ve Control  |
| dopole indeterminate optic(s)<br>Format (D_state) (vend) → (ned D_state) (event) →<br>4 a → 2 b → 4<br>Uncertain F f<br>Diagnoser State 4 contains the following FSA states:<br>1<br>Diagnoser State 2 contains the following FSA states:<br>2<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                           |                        | X<br>X<br>X |
| COMMAND 15 "C:Users'user/Desktop'manufact11/smHmf.cycles" succ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Close                                     |                        |             |
| UMDES_INPUT_1 saved successfully.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                           | -                      |             |

Figure: Indeterminate cycle analysis for diagnosability



S. Lafortune (UMich)

< □ ▶

72 / 96

Diagnosis

**Key Results** 

## Diagnosability Analysis in DESUMA

| BESUMA<br>File Edit View UMDES |                       |                                                   |                            | Help      |
|--------------------------------|-----------------------|---------------------------------------------------|----------------------------|-----------|
| × New1 × diag out              |                       | Automata                                          | Properties                 |           |
|                                | ÎN)                   | Name<br>Editable<br>States<br>Transitions         | diag_out<br>true<br>6<br>9 |           |
|                                | $\downarrow$          | V STAT                                            | FS                         |           |
|                                | a<br>NAF1<br>a b a    | State Nam<br>1N<br>1N,3F1<br>2N,4F1<br>3F1<br>4F1 | e Marked                   | Initial   |
|                                |                       | 5F1,4F1                                           |                            |           |
| (5F1.4F1)                      | a (IN.3F1)            | ▼ EVEN                                            | TS                         |           |
| a<br>a<br>4F1                  |                       |                                                   |                            |           |
| COMMAND 155a                   | ully.                 |                                                   |                            | DESUMA    |
|                                | Figure: Diagnoser aut | tomato                                            | on                         |           |
|                                |                       | 4                                                 |                            | ► < Ξ >   |
| une (UMich)                    | Discrete Event System | าร                                                |                            | 17 Septem |

17 September 2008

73 / 96

5990

€

### **Document Processing Systems**

Meera Sampath et al. (Xerox Corp.)

- Complex processes, few sensors
- Electro-mechanical faults (paper path)
- Image quality faults (virtual sensor approach)





### Automated Highway Systems

Raja Sengupta et al. (U. California at Berkeley)

Diagnosis

Applications

- Platoons of vehicles
- In-vehicle faults
- Transmitter and receiver faults
- Decentralized diagnosis with coordinator





Intrusion Detection in Computer Systems

Diagnosis of *Patterns*: Sahika Genc (GE) (Annual Symposium on Information Assurance, Albany, NY, 2008) Related work: H. Marchand et al. (IRISA, France)

Diagnosis



Applications

## Recent Research: J.C. Basilio [2007-08]

Robustness properties of architecture of R. Debouk et al. (2000):



Figure: No coordinator: At least one site should detect each fault

One of more sites may fail  $\rightarrow$  Robust Decentralized Diagnosability

Definition, test, online robust diagnosis





- Various decentralized / distributed architectures
- Methodologies based on Petri net models
- Inverse problem: security (opacity)
- Merge diagnosis and control: Fault tolerant control
- Sensor networks: use sensors efficiently!

500

#### Diagnosis Res

**Research Trends** 

### Fault Tolerant Control (A. Paoli, Bologna)



S. Lafortune (UMich)

< 🗆 🕨

5900

### Active Sensing of Partially Observed DES

Third Part of this Talk

How to use sensors efficiently...



S. Lafortune (UMich)

Discrete Event Systems

### Decentralized Control or Diagnosis With Communication

Communication is costly: energy, bandwidth, security,...



Who should communicate with whom and when?



## Decentralized Control or Diagnosis With Communication

• Estimation, control, and communication are interdependent!

- what you estimate depends on what others tell you and on your/their control actions
- what you do for control affects what you/others observe and thus what you estimate
- what you communicate affects the observations of others and thus their communications to you
- what others communicate to you affects your estimation (and thus your control and your communications)
- and so on and so forth
- Lack of separation in general  $\Rightarrow$  Computationally challenging



< ロ > (同 )

### Decentralized Control or Diagnosis With Communication

### • Our Approach:

- Fix control (diagnostic) and only solve the communication problem
  - Problem is still hard: all communication policies are interdependent
- Solve only for communication with sensors
  - Called the Active Sensing Problem
- Present solution for a *single* agent only (!)
  - [Wang et al. CDC'08]
  - Related work: [Thorsley-Teneketzis, 2007], [Cassez-Tripakis, 2008]



Active Sensing Active S

#### Active Sensing

## Active Sensing of Partially Observed DES

Formulation:

- Automaton: G
- Potentially Observable Event Set of G:  $E_o = \{a, g\}$
- Set of state pairs of *G* that must be distinguished: *safety* specification (0,1), (1,4)
- When to activate a and g sensors?
  - Activate only if necessary, but enough to be safe
- Decide on the basis of the transitions in  ${\cal G}$



 $\mathcal{O} \mathcal{Q} \mathcal{O}$ 

#### Active Sensing

### Active Sensing of Partially Observed DES

### Monotonicity:

- Do not observe q at 0: (1,4)



< 🗆

nan

#### Active Sensing

### Active Sensing of Partially Observed DES

- Monotonicity:
  - Do not observe g at 0: (1,4) confused
  - Do not observe *g* at 0 and *a* at 2:



< 🗆

nan

#### Active Sensing

## Active Sensing of Partially Observed DES

- Monotonicity:
  - Do not observe g at 0: (1,4) confused
  - Do not observe g at 0 and a at 2: (1,4) **not** confused!
  - But cannot do the above if you



< 🗆

500

#### Active Sensing

### Active Sensing of Partially Observed DES

- Monotonicity:
  - Do not observe q at 0: (1,4) confused
  - Do not observe g at 0 and a at 2: (1,4) **not** confused!
  - But cannot do the above if you activate your own sensors!



500

### Active Sensing: Feasibility

## Sensor activation policy (SAP):

- $\Omega \subseteq Transitions(G)$ 
  - If two strings "look the same," then must have same activation decision on a common possible event
  - Not activating g at 0 and a at 2 is not feasible: if g is not activated at 0, then 0 and 2 must have the same activation decision for a
  - This is called the *feasibility* requirement of SAP





**Active Sensing** 

### Active Sensing: Problem Statement

Given G,  $E_o$ , and a set of state pairs that must be distinguished, find  $\Omega^* \subseteq Transitions(G)$  such that

- $\Omega^*$  satisfies the safety specification
- $\Omega^*$  satisfied the feasibility requirement
- $\Omega^*$  is a minimal set



Figure: A Minimal Solution



### Active Sensing: Main Theorems

### Theorem

[Monotonicity] Let  $\Omega_1$  and  $\Omega_2$  be two feasible SAP, such that  $\Omega_1 \subset \Omega_2$ . Then

 $\Omega_1 \text{ safe } \Rightarrow \Omega_2 \text{ safe}$ 

### Theorem

[Existence of Maximum Element] Let  $\Omega$  be an SAP. Then there exists a maximum feasible subpolicy  $\Omega^{\uparrow F}$ that contains all  $\Omega_F \subseteq \Omega$  that are feasible. The complexity of performing  $\uparrow F$  is polynomial in the state space of G.



### Active Sensing: Main Theorems

### Theorem

[Monotonicity] Let  $\Omega_1$  and  $\Omega_2$  be two feasible SAP, such that  $\Omega_1 \subset \Omega_2$ . Then

 $\Omega_1 \text{ safe } \Rightarrow \Omega_2 \text{ safe}$ 

### Theorem

[Existence of Maximum Element] Let  $\Omega$  be an SAP. Then there exists a maximum feasible subpolicy  $\Omega^{\uparrow F}$ that contains all  $\Omega_F \subseteq \Omega$  that are feasible. The complexity of performing  $\uparrow F$  is polynomial in the state space of G.



87 / 96

< □ ▶ < ┌┦ ▶

## Active Sensing: A Polynomial-Complexity Algorithm

### • Let $\Omega$ be safe and feasible

## • Let $\Omega_{test} = \Omega \setminus \{(x, e)\}$

• If  $\Omega_{test}^{\uparrow F}$  is not safe, then no subset of  $\Omega_{test}$  that does not activate e at



 $) \land ( \land )$ 

## Active Sensing: A Polynomial-Complexity Algorithm

- Let  $\Omega$  be safe and feasible ۵.
- Let  $\Omega_{test} = \Omega \setminus \{(x, e)\}$ 
  - If  $\Omega_{test}^{\uparrow F}$  is not safe, then no subset of  $\Omega_{test}$  that does not activate e at x will be safe
    - $\Rightarrow$  Keep e activated at x and try to deactivate some other event at some other state
  - If  $\Omega_{test}^{\uparrow F}$  is safe, then e need not be activated at x



## Active Sensing: A Polynomial-Complexity Algorithm

- Let  $\Omega$  be safe and feasible ۵.
- Let  $\Omega_{test} = \Omega \setminus \{(x, e)\}$ 
  - If  $\Omega_{test}^{\uparrow F}$  is not safe, then no subset of  $\Omega_{test}$  that does not activate e at x will be safe
    - $\Rightarrow$  Keep e activated at x and try to deactivate some other event at some other state
  - If  $\Omega_{test}^{\uparrow F}$  is safe, then e need not be activated at x $\Rightarrow$  Reinitialize  $\Omega$  to  $\Omega_{test}^{\uparrow F}$
- Proceed until each (observable) event e at each state x has been
  - Only one such consideration per transition (x, e) in G
  - A minimal (safe and feasible) solution  $\Omega^*$  is found



## Active Sensing: A Polynomial-Complexity Algorithm

- Let  $\Omega$  be safe and feasible ۵.
- Let  $\Omega_{test} = \Omega \setminus \{(x, e)\}$ 
  - If  $\Omega_{test}^{\uparrow F}$  is not safe, then no subset of  $\Omega_{test}$  that does not activate e at x will be safe
    - $\Rightarrow$  Keep e activated at x and try to deactivate some other event at some other state
  - If  $\Omega_{test}^{\uparrow F}$  is safe, then e need not be activated at x $\Rightarrow$  Reinitialize  $\Omega$  to  $\Omega_{tast}^{\uparrow F}$
- Proceed until each (observable) event e at each state x has been considered for de-activation
  - Only one such consideration per transition (x, e) in G
  - A minimal (safe and feasible) solution  $\Omega^*$  is found

• Ω<sup>\*</sup> depends on the order in which transitions are considered...



< 口 > < 何 >

## Active Sensing: A Polynomial-Complexity Algorithm

- Let  $\Omega$  be safe and feasible ۵.
- Let  $\Omega_{test} = \Omega \setminus \{(x, e)\}$ 
  - If  $\Omega_{test}^{\uparrow F}$  is not safe, then no subset of  $\Omega_{test}$  that does not activate e at x will be safe
    - $\Rightarrow$  Keep e activated at x and try to deactivate some other event at some other state
  - If  $\Omega_{test}^{\uparrow F}$  is safe, then e need not be activated at x $\Rightarrow$  Reinitialize  $\Omega$  to  $\Omega_{tast}^{\uparrow F}$
- Proceed until each (observable) event e at each state x has been considered for de-activation
  - Only one such consideration per transition (x, e) in G
  - A minimal (safe and feasible) solution  $\Omega^*$  is found
- $\Omega^*$  depends on the order in which transitions are considered...



88 / 96

< O > < A >

### Active Sensing: Example

| ) ⊉₽@ ⊇⊴                         |                                                                                                                                         |                        | E I |
|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|------------------------|-----|
| ⊠ex3                             | Automata                                                                                                                                | Properties             |     |
| ()                               | Name<br>Editable<br>States<br>Transitions                                                                                               | ex3<br>true<br>5<br>11 |     |
|                                  | ▼ STATE                                                                                                                                 | S                      |     |
| a1 a1<br>1 e2 a2<br>a2 e1<br>3 2 | 1       2       3       ✓       EVEN1       Name       1       2       3       ✓       EVEN1       Name       1       2       2       3 |                        |     |
|                                  |                                                                                                                                         |                        |     |



5990

₹

 $\langle \Box \rangle \langle \langle A \rangle \rangle$ 

÷,

## Active Sensing: Example

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ø                                                                                                                               |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Automata Properties                                                                                                             |
| 4<br>0<br>1<br>1<br>1<br>2<br>3<br>4<br>1<br>4<br>1<br>4<br>1<br>4<br>1<br>4<br>1<br>4<br>1<br>4<br>1<br>4<br>1<br>4<br>1<br>4<br>1<br>4<br>1<br>4<br>1<br>4<br>1<br>4<br>1<br>4<br>1<br>4<br>1<br>4<br>1<br>4<br>1<br>4<br>1<br>4<br>1<br>4<br>1<br>4<br>1<br>4<br>1<br>4<br>1<br>4<br>1<br>4<br>1<br>4<br>1<br>4<br>1<br>4<br>1<br>4<br>1<br>4<br>1<br>4<br>1<br>4<br>1<br>4<br>1<br>4<br>1<br>4<br>1<br>4<br>1<br>4<br>1<br>4<br>1<br>4<br>1<br>4<br>1<br>4<br>1<br>4<br>1<br>4<br>1<br>4<br>1<br>4<br>1<br>4<br>1<br>4<br>1<br>4<br>1<br>4<br>1<br>4<br>1<br>4<br>1<br>4<br>1<br>4<br>1<br>4<br>1<br>4<br>1<br>4<br>1<br>4<br>1<br>4<br>1<br>4<br>1<br>4<br>1<br>4<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | Name e23 Tintable true States 5 Tinnsitions 11 States Name Marked Initial States Name Marked Initial variation Policy toon file |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Submit Cance                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Curre                                                                                                                           |



90 / 96

S. Lafortune (UMich)

 $\langle \Box \rangle \langle \langle A \rangle \rangle$ 

÷,
#### **Active Sensing**

# Active Sensing: Example

| d<br>e2<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | Name         ev3           Editable         true           States         5           Transitions         11 |
|--------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
|                                                                          | ▼ STATES                                                                                                     |
|                                                                          | State Name Marked Initial 0                                                                                  |
|                                                                          | ilts Window                                                                                                  |
| 1 a2 a2<br>a2 a2 et<br>3 a1<br>2 a1<br>Confusable s<br>0 0<br>4 4<br>3 3 | min_sen_oct.out                                                                                              |
|                                                                          | Close                                                                                                        |
| "C:users us                                                              | ar wesktop manuract 14 sm min_sen_act.out "successfully loaded.                                              |

S. Lafortune (UMich)

 $\langle \Box \rangle \langle \langle A \rangle \rangle$ 

÷,

5990

₹

## **Research Trends**

- Decentralized systems
- Quantitative approaches
- From active sensing to multi-agent communication...



< 🗆

## What should you remember?

- Modeling formalisms:
  - Languages
  - Automata
  - Petri nets

## • Concepts:

- Safety
- Nonblocking
- Maximal Permissiveness
- Operations:
  - Parallel composition
  - Abstractions (Projections)

nac

# Conclusion

## What should you remember?

## • Modeling formalisms:

- Languages
- Automata
- Petri nets

## • Concepts:

- Safety
- Nonblocking
- Maximal Permissiveness

## Operations:

- Parallel composition
- Abstractions (Projections)

nac

# Conclusion

### What should you remember?

- Modeling formalisms:
  - Languages
  - Automata
  - Petri nets

### • Concepts:

- Safety
- Nonblocking
- Maximal Permissiveness
- Operations:
  - Parallel composition
  - Abstractions (Projections)

< □ ▶

# Conclusion

### What should you remember?

- Modeling formalisms:
  - Languages
  - Automata
  - Petri nets

## • Concepts:

- Safety
- Nonblocking
- Maximal Permissiveness
- Operations:
  - Parallel composition
  - Abstractions (Projections)

nan

# Conclusion

### What should you remember?

- Modeling formalisms:
  - Languages
  - Automata
  - Petri nets
- Concepts:
  - Safety
  - Nonblocking
  - Maximal Permissiveness

## • Operations:

- Parallel composition
- Abstractions (Projections)

< D

nan

# Conclusion

### What should you remember?

- Modeling formalisms:
  - Languages
  - Automata
  - Petri nets
- Concepts:
  - Safety
  - Nonblocking
  - Maximal Permissiveness

## • Operations:

- Parallel composition
- Abstractions (Projections)

5900

# Conclusion

### What should you remember?

- Modeling formalisms:
  - Languages
  - Automata
  - Petri nets
- Concepts:
  - Safety
  - Nonblocking
  - Maximal Permissiveness
- Operations:
  - Parallel composition
  - Abstractions (Projections)

nan

## Conclusion: Concepts to Remember

### • Properties:

- Controllability (observability)
- Nonconflicting
- Diagnosability
- Feasibility

### Algorithmic Techniques:

- $\bullet \uparrow C$
- cycle analysis in Diagnosers
- $\uparrow F$

< □ ▶

nac



## Conclusion: Concepts to Remember

#### • Properties:

- Controllability (observability)
- Nonconflicting
- Diagnosability
- Feasibility
- Algorithmic Techniques:
  - $\bullet \ \uparrow C$
  - cycle analysis in Diagnosers
  - $\uparrow F$

< □ ▶

## Conclusion: Concepts to Remember

### • Properties:

- Controllability (observability)
- Nonconflicting
- Diagnosability
- Feasibility

## • Algorithmic Techniques:

- $\uparrow C$
- cycle analysis in Diagnosers
- $\uparrow F$

< □ ▶

## Conclusion: Concepts to Remember

### • Properties:

- Controllability (observability)
- Nonconflicting
- Diagnosability
- Feasibility

## • Algorithmic Techniques:

- $\bullet \ \uparrow C$
- cycle analysis in Diagnosers
- $\uparrow F$

< □ ▶



# Conclusion: Concepts to Remember

### • Properties:

- Controllability (observability)
- Nonconflicting
- Diagnosability
- Feasibility
- Algorithmic Techniques:
  - $\uparrow C$
  - cycle analysis in Diagnosers
  - $\uparrow F$

< 🗆 🕨

## Conclusion: What Lies Ahead

- Modular reconfigurable control
- Diagnosis + Control: Fault-tolerant control
- Computer security: Opacity, Nontransitive interference
- Communication in distributed control architectures
- Applications, Applications, Applications... (Modeling...)

## Conclusion: What Lies Ahead

- Modular reconfigurable control
- Diagnosis + Control: Fault-tolerant control
- Computer security: Opacity, Nontransitive interference
- Communication in distributed control architectures
- Applications, Applications, Applications... (Modeling...)

# Conclusion: Education

### • Educating Control Engineers in the 21st Century

**Obrigado!** 



S. Lafortune (UMich)

Discrete Event Systems

< □ ▶

# Conclusion: Education

### • Educating Control Engineers in the 21st Century

**Obrigado!** 



S. Lafortune (UMich)

Discrete Event Systems

< 🗆 🕨